Internal labelling operators and contractions of Lie algebras

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
We analyze under which conditions the missing label problem associated to a reduction chain s′ ⊂ s of (simple) Lie algebras can be completely solved by means of an In¨on¨u-Wigner contraction g naturally related to the embedding. This provides a new interpretation of the missing label operators in terms of the Casimir operators of the contracted algebra, and shows that the available labeling operators are not completely equivalent. Further, the procedure is used to obtain upper bounds for the number of invariants of affine Lie algebras arising as contractions of semisimple algebras.
UCM subjects
Unesco subjects
Elliott J P 1958 Proc. Roy. Soc. Lond. A 245 128, 562 Racah G 1949 Phys. Rev. 76 1352 Rowe D J 1995 J. Math. Phys. 36 1520 Rowe D J, Le Blanc R and Repka J 1989 J. Phys. A: Math. Gen. 22 L309 Sharp R T 1975 J. Math. Phys. 16, 2050 Peccia A and Sharp R T 1976 J. Math. Phys. 17 1313 Celeghini E, Tarlini M and Vitiello G 1984 Nuovo Cimento A 84 19 Racah G 1951 Group Theory and Spectroscopy (Princeton Univ. Press, N. J.) Patera J, Sharp R T, Winternitz P and Zassenhaus H 1976 J. Math. Phys. 17 986 Campoamor-Stursberg R 2006 SIGMA 2 p28 Segal I E 1951 Duke Math. J. 18 221 Inönü E and Wigner E P 1953 Proc. Nat. Acad. Sci U.S.A. 39 510 Weimar-Woods E 2000 Rev. Math. Phys. 12 1505 Campoamor-Stursberg R 2003 J. Phys. A: Math. Gen. 36 1357 ——2003 Acta Physica Polonica B 34 3901 Ndogmo J C 2004 J. Phys. A: Math. Gen. 37 5635 Weimar-Woods E 1996 Proc. XXI Int. Colloq. Group Theoretical Methods in Physics (Goslar), vol 1, (Singapore: World Scientific) p 132 Campoamor-Stursberg R 2007 Acta Phys. Pol. B 38 3 Dynkin E P 1952 Mat. Sb. 30 349 Gruber B and Lorente M 1972 J. Math. Phys. 13 1639 Patera J and Sankoff D 1973 Tables of Branching Rules for Representations of Simple Lie algebras (Montréal: Presses de l’Université de Montréal) Chaichian M, Demichev A P and Nelipa N F 1983 Comm- Math. Phys. 90 353 Herranz F J and Santander M 1997 J. Phys. A: Math. Gen. 30 5411 Herranz F J, Perez Bueno J C and Santander M 1998 J. Phys. A: Math. Gen. 31 5327 Campoamor-Stursberg R 2006 J. Phys. A: Math. Gen. 39 2325 Campoamor-Stursberg R 2007 J. Phys. A: Math. Theor. 40 5355 Louck J D 1976 Proceedings of the International Symposium on Mathematical Physics, Mexico City, Mexico Judd B R, Miller W, Patera J and Winternitz P 1974 J. Math. Phys. 15 1787 Bargmann V and Moshinsky M 1965 Nucl. Phys. 23 177 Hecht K T 1965 Nucl. Phys. 63 177 Sharp R T and Pieper S C 1968 J. Math. Phys. 9 663 Quesne Ch 1976 J. Math. Phys. 17, 1452; 18, 1210 (1977). Partensky A and Maguin C 1978 J. Math. Phys. 19 511 Moshinsky M and Nagel J G 1963 Phys. Letters 5 173 De Meyer H, Vanden Berghe G, Van der Jeugt J and De Wilde P 1985 J. Math. Phys. 26 2124 Bincer A M 1980 J. Math. Phys. 21 671 ——1983 J. Math. Phys. 24 1695 Hughes J W B and Van der Jeugt J 1985 J. Math. Phys. 26 894 Giroux Y and Sharp R T 1987 J. Math. Phys. 28 1671 Boyko V, Patera J and Popovych R 2006 J. Phys. A: Math.Gen. 39 5749 ——2007 J. Phys. A: Math. Theor. 40 113