Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Defect and nanocrystal cathodoluminescence of synthetic opals infilled with Si and Pt

Loading...
Thumbnail Image

Full text at PDC

Publication date

2001

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
Citations
Google Scholar

Citation

Abstract

Synthetic opals-composed of 250 nm amorphous silica spheres closed packed in a face centered cubic structure-have been infilled with silicon, platinum, and with Si and different Pt contents. The luminescent properties of these composites have been investigated by cathodoluminescence (CL) microscopy and spectroscopy. CL emission is influenced by the material used to infill the pores of the opal matrix. CL spectra of all the samples investigated show two well-known bands, associated with the defect structure of the silica spheres, centered at about 1.9 and 2.7 eV, respectively. Emission in the 2.15-2.45 eV range, particularly intense in opal-based composites with a high Pt content, is tentatively associated with SiO2 defects involving silicon clusters. A CL band peaked at about 3.4 eV as well as a band in the 1.50-1.75 eV range, whose peak position seems to be affected by the Pt content of the samples, are associated with the presence of Si nanocrystals. The behavior of these emissions suggests that both are related to defect states at the interface between Si nanocrystals and SiO2 forming the opal spheres.

Research Projects

Organizational Units

Journal Issue

Description

© 2001 American Institute of Physics. This work was supported by DGES ~Project No. PB96-0639!, the Russian R&D program ‘‘Nanostructures’’ (Grant No. 97-2016), and RFBR under Grant No. 98-02-17350.

Unesco subjects

Keywords

Collections