Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Defect and nanocrystal cathodoluminescence of synthetic opals infilled with Si and Pt

dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.contributor.authorKurdyukov, D.A.
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorSokolov, V. I.
dc.contributor.authorZamoryanskaya, M. V.
dc.date.accessioned2023-06-20T19:01:36Z
dc.date.available2023-06-20T19:01:36Z
dc.date.issued2001-03-01
dc.description© 2001 American Institute of Physics. This work was supported by DGES ~Project No. PB96-0639!, the Russian R&D program ‘‘Nanostructures’’ (Grant No. 97-2016), and RFBR under Grant No. 98-02-17350.
dc.description.abstractSynthetic opals-composed of 250 nm amorphous silica spheres closed packed in a face centered cubic structure-have been infilled with silicon, platinum, and with Si and different Pt contents. The luminescent properties of these composites have been investigated by cathodoluminescence (CL) microscopy and spectroscopy. CL emission is influenced by the material used to infill the pores of the opal matrix. CL spectra of all the samples investigated show two well-known bands, associated with the defect structure of the silica spheres, centered at about 1.9 and 2.7 eV, respectively. Emission in the 2.15-2.45 eV range, particularly intense in opal-based composites with a high Pt content, is tentatively associated with SiO2 defects involving silicon clusters. A CL band peaked at about 3.4 eV as well as a band in the 1.50-1.75 eV range, whose peak position seems to be affected by the Pt content of the samples, are associated with the presence of Si nanocrystals. The behavior of these emissions suggests that both are related to defect states at the interface between Si nanocrystals and SiO2 forming the opal spheres.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipRussian R&D program ‘‘Nanostructures’’
dc.description.sponsorshipRFBR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26310
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1346653
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59127
dc.issue.number5
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final2726
dc.page.initial2720
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPB96-0639
dc.relation.projectID97-2016
dc.relation.projectID98-02-17350
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordAmorphous-Silicon Dioxide
dc.subject.keywordOxidized Porous Silicon
dc.subject.keywordOptical-Properties
dc.subject.keywordLuminescence Properties
dc.subject.keywordIon-Implantation
dc.subject.keywordOxide Films
dc.subject.keywordPhotoluminescence
dc.subject.keywordCenters
dc.subject.keywordOxygen
dc.subject.keywordIrradiation
dc.subject.ucmFísica de materiales
dc.titleDefect and nanocrystal cathodoluminescence of synthetic opals infilled with Si and Pt
dc.typejournal article
dc.volume.number89
dcterms.references1. Yu. A. Vlasov, V. N. Astratov, O. Z. Karimov, and A. A. Kaplyanskii, Phys. Rev. B 55, R13357 (1997). 2. A. Blanco, C. López, R. Mayoral, H. Míguez, F. Meseguer, A. Mifsud, and J. Herrero, Appl. Phys. Lett. 73, 1781 (1998). 3. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, Appl. Phys. Lett. 74, 1821 (1999). 4. D. L. Griscom, Phys. Rev. B 40, 4224 (1989). 5. M. A. Stevens Kalceff and M. R. Phillips, Phys. Rev. B 52, 3122 (1995). 6. C. Itoh, T. Suzuki, and N. Itoh, Phys. Rev. B 41, 3794 (1990). 7. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998). 8. Y. Kanemitsu, M. Iiboshi, and T. Kushida, Appl. Phys. Lett. 76, 2200 (2000). 9 .J. Piqueras, B. Méndez, R. Plugaru, G. Craciun, J. A. García, and A. Remón, Appl. Phys. A: Mater. Sci. Process. 68, 329 (1999). 10. T. Inokuma, Y. Kurata, and S. Hasegawa, J. Lumin. 80, 247 (1999). 11.W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968). 12. V. N. Bogomolov, L. S. Parfenieva, A. V. Prokofiev, I. A. Smirnov, S. M. Samoilovich, A. Jezowskii, J. Mucha, and H. Miserek, Phys. Solid State 37, 1874 (1995). 13. V. N. Bogomolov, L. M. Sorokin, D. A. Kurdyukov, T. M. Pavlova, and J. L. Hutchison, Phys. Solid State 39, 1869 (1997). 14. V. N. Bogomolov et al., Tech. Phys. Lett. 24, 326 (1998). 15. N. A. Feoktistov, V. G. Golubev, J. L. Hutchison, D. A. Kurdyukov, A. B. Pevtsov, R. Schwarz, J. Sloan, and L. M. Sorokin, Mat. Res. Soc. Symp. Proc. 609, A24.4.1 (2000). 16. V. N. Bogomolov et al., J. Non-Cryst. Solids 266–269, 1021 (2000). 17. C. Díaz-Guerra and J. Piqueras, Physica C 275, 37 (1997). 18.M. V. Zamoryanskaya and V. I. Sokolov, Phys. Solid State 40, 1797 (1998). 19. L.-S. Liao, X.-M. Bao, X.-Q. Zheng, N.-S. Li, and N.-B. Min, Appl. Phys. Lett. 68, 850 (1996). 20. G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, Appl. Phys. Lett. 69, 1689 (1996). 21. S. Tong, X.-N. Liu, T. Gao, and X.-M. Bao, Appl. Phys. Lett. 71, 698 (1997). 22. H. Z. Song, X. M. Bao, N. S. Li, and X. L. Wu, Appl. Phys. Lett. 72, 356 (1998). 23. M. Ajgaonkar, Y. Zhang, H. Grebel, M. Sosnowski, and D. C. Jacobson, Appl. Phys. Lett. 76, 3876 (2000). 24. H. Imai, K. Araki, and H. Imagawa, Phys. Rev. B 38, 12772 (1988). 25. M. A. Stevens Kalceff, Phys. Rev. B 57, 5674 (1998). 26. D. L. Griscom, J. Appl. Phys. 77, 5008 (1995). 27. X. Liu, J. C. H. Phang, D. S. H. Chan, and W. K. Chim, J. Phys. D 32, 1563 (1999). 28. R. Tohmon, Y. Shimogaichi, H. Mizuno, Y. Ohki, K. Nagasawa, and Y. Hama, Phys. Rev. Lett. 62, 1388 (1989). 29. W. Hayes, M. J. Kane, O. Salminen, R. L. Wood, and S. P. Doherty, J. Phys. C 17, 2943 (1984). 30. M. Watanabe, S. Juodkazis, H. B. Sun, S. Matsuo, and H. Misawa, Phys. Rev. B 60, 9959 (1999). 31. S. Thomas, J. Appl. Phys. 45, 161 (1974). 32. B. Carrie`re and B. Lang, Surf. Sci. 64, 209 (1977). 33. L. N. Skuja, A. R. Silin, and A. G. Boganov, J. Non-Cryst. Solids 63, 431 (1984). 34. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997). 35. Y. Kanemitsu, Phys. Rev. B 49, 16845 (1994). 36. T. Shimizu-Iwayama, D. E. Hole, and I. W. Boyd, J. Phys.: Condens. Matter 11, 6595 (1999). 37. A. G. Cullis, L. T. Canham, G. M. Williams, P. W. Smith, and O. D. Doser, J. Appl. Phys. 75, 493 (1994). 38. J. Rams, B. Me´ndez, G. Craciun, R. Plugaru, and J. Piqueras, Appl. Phys. Lett. 74, 1728 (1999). 39. J. Rams, R. Plugaru, and J. Piqueras, Mater. Sci. Eng., B 68, 126 (1999). 40. T. Shimizu-Iwayama, N. Kurumado, D. E. Hole, and P. D. Townsend, J. Appl. Phys. 83, 6018 (1998). 41. D. Han, G. Yue, J. D. Lorentzen, and J. Lin, J. Appl. Phys. 87, 1882 (2000.
dspace.entity.typePublication
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ158libre.pdf
Size:
701.82 KB
Format:
Adobe Portable Document Format

Collections