Ondas gravitatorias y su detección
Loading...
Official URL
Full text at PDC
Publication date
2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Un siglo después de la predicción teórica de las ondas gravitacionales por parte de Einstein, el estudio de ondas gravitacionales se ha convertido en un elemento clave en la exploración del universo, especialmente tras la primera detección directa en febrero de 2016 por la colaboración LIGO-VIRGO. En el presente trabajo, se presentan los principales fundamentos teóricos de las ondas gravitacionales y de su detección en el marco de la Relatividad General. Partiendo de la teoría linealizada de la gravedad, se muestra cómo surgen la ecuación de onda y su solución más simple en el gauge TT, obteniéndose así las polarizaciones de la onda gravitatoria.
A partir de esta base, se analiza cómo estas ondas interaccionan con la materia y cómo esta interacción permite su detección mediante interferómetros Michelson equipados con masas espejo. Se explica cómo, durante el paso de la onda gravitacional, la distancia propia entre dos masas oscila con la frecuencia de la onda. Este hecho representa el fundamento físico principal para la detección de ondas gravitacionales en los observatorios más importantes a lo largo de todo el mundo, como LIGO y VIRGO, entre otros.
Posteriormente, se tratan los principales aspectos energéticos y la radiación emitida por las ondas gravitacionales. Considerando la teoría linealizada de la gravedad como una teoría clásica de campos, se obtiene la expresión del tensor energía-momento. Asimismo, se deduce el campo gravitatorio radiado, cuyo desarrollo multipolar a velocidades no relativistas permite identificar el término cuadrupolar como dominante en la emisión de radiación gravitatoria. Por último, se hace un repaso de las posibles fuentes astrofísicas y cosmológicas de ondas gravitacionales en el contexto de los detectores terrestres y espaciales.
A century after Einstein’s theoretical prediction of gravitational waves, the study of gravitational waves has become a key element in the exploration of the universe, notably after the first direct detection in February 2016 by the LIGO-VIRGO collaboration. In this paper, we present the main theoretical foundations of gravitational waves and their detection in the framework of General Relativity. Starting from the linearized theory of gravity, it is shown how the wave equation and its simplified solution in the TT gauge arise, from which the wave polarizations emerge. From this basis, it is analyzed how these waves interact with matter, and how this interaction allows their detection by means of Michelson interferometers equipped with mirror masses. During the passage of a gravitational wave, the proper distance between two masses oscillates with the wave’s frequency, showing a key principle behind gravitational wave detection. This fact represents the main physical principle for the detection of gravitational waves in the most important observatories all over the world, such as LIGO and VIRGO, among others. Subsequently, the main energy-related aspects and the radiation emitted by gravitational waves are discus sed. The energy-momentum tensor is derived by treating the linearized theory of gravity as a classical field theory. Likewise, the radiated gravitational field is also derived. Its multipole expansion at non-relativistic velocities allows us to identify the quadrupole term as dominant in the emission of gravitational radia tion. Finally, the possible astrophysical and cosmological sources of gravitational waves are reviewed in the context of ground-based and space-based detectors.
A century after Einstein’s theoretical prediction of gravitational waves, the study of gravitational waves has become a key element in the exploration of the universe, notably after the first direct detection in February 2016 by the LIGO-VIRGO collaboration. In this paper, we present the main theoretical foundations of gravitational waves and their detection in the framework of General Relativity. Starting from the linearized theory of gravity, it is shown how the wave equation and its simplified solution in the TT gauge arise, from which the wave polarizations emerge. From this basis, it is analyzed how these waves interact with matter, and how this interaction allows their detection by means of Michelson interferometers equipped with mirror masses. During the passage of a gravitational wave, the proper distance between two masses oscillates with the wave’s frequency, showing a key principle behind gravitational wave detection. This fact represents the main physical principle for the detection of gravitational waves in the most important observatories all over the world, such as LIGO and VIRGO, among others. Subsequently, the main energy-related aspects and the radiation emitted by gravitational waves are discus sed. The energy-momentum tensor is derived by treating the linearized theory of gravity as a classical field theory. Likewise, the radiated gravitational field is also derived. Its multipole expansion at non-relativistic velocities allows us to identify the quadrupole term as dominant in the emission of gravitational radia tion. Finally, the possible astrophysical and cosmological sources of gravitational waves are reviewed in the context of ground-based and space-based detectors.












