Lump solitons in a higher-order nonlinear equation in 2+1 dimensions
Loading...
Official URL
Full text at PDC
Publication date
2016
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citation
Abstract
We propose and examine an integrable system of nonlinear equations that generalizes the nonlinear Schrodinger equation to 2 + 1 dimensions. This integrable system of equations is a promising starting point to elaborate more accurate models in nonlinear optics and molecular systems within the continuum limit. The Lax pair for the system is derived after applying the singular manifold method. We also present an iterative procedure to construct the solutions from a seed solution. Solutions with one-, two-, and three-lump solitons are thoroughly discussed.
Description
©2016 American Physical Society.
This research was supported in part by FEDER, MINECO (Project No. MAT2013-46308-C2), and Junta de Castilla y León (Project No. SA226U13).













