Lump solitons in a higher-order nonlinear equation in 2+1 dimensions
| dc.contributor.author | Estévez, P. G. | |
| dc.contributor.author | Díaz García, Elena | |
| dc.contributor.author | Domínguez-Adame Acosta, Francisco | |
| dc.contributor.author | Cerveró, José M. | |
| dc.contributor.author | Díez Alcántara, Eduardo | |
| dc.date.accessioned | 2023-06-18T06:55:19Z | |
| dc.date.available | 2023-06-18T06:55:19Z | |
| dc.date.issued | 2016-06-20 | |
| dc.description | ©2016 American Physical Society. This research was supported in part by FEDER, MINECO (Project No. MAT2013-46308-C2), and Junta de Castilla y León (Project No. SA226U13). | |
| dc.description.abstract | We propose and examine an integrable system of nonlinear equations that generalizes the nonlinear Schrodinger equation to 2 + 1 dimensions. This integrable system of equations is a promising starting point to elaborate more accurate models in nonlinear optics and molecular systems within the continuum limit. The Lax pair for the system is derived after applying the singular manifold method. We also present an iterative procedure to construct the solutions from a seed solution. Solutions with one-, two-, and three-lump solitons are thoroughly discussed. | |
| dc.description.department | Depto. de Física de Materiales | |
| dc.description.faculty | Fac. de Ciencias Físicas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO)/FEDER | |
| dc.description.sponsorship | Junta de Castilla y León | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/38920 | |
| dc.identifier.doi | 10.1103/PhysRevE.93.062219 | |
| dc.identifier.issn | 1539-3755 | |
| dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevE.93.062219 | |
| dc.identifier.relatedurl | http://journals.aps.org/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/24587 | |
| dc.issue.number | 6 | |
| dc.journal.title | Physical review E | |
| dc.language.iso | eng | |
| dc.page.final | 062219_8 | |
| dc.page.initial | 062219_1 | |
| dc.publisher | American Physical Society | |
| dc.relation.projectID | MAT2013-46308-C2 | |
| dc.relation.projectID | SA226U13 | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 538.9 | |
| dc.subject.keyword | Schrodinger-equation | |
| dc.subject.keyword | Discreteness | |
| dc.subject.ucm | Física de materiales | |
| dc.title | Lump solitons in a higher-order nonlinear equation in 2+1 dimensions | |
| dc.type | journal article | |
| dc.volume.number | 93 | |
| dcterms.references | 1. A. S. Davydov and N. I. Kislukha, Phys. Stat. Sol. (b) 59, 465 (1973). 2. P. L. Christiansen and A. C. Scott (eds.), NATO ASI Series (Plenum Press, New York, 1990). 3. M. Daniel and K. Deepamala, Physica A 221, 241–255 (1995). 4. M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A 133, 483 (1988). 5. A. Ankiewicz, Y. Wang, S. Wabnitz, and N. Akhmediev, Phys. Rev. E 89, 012907 (2014). 6. A. Ankiewicz and N. Akhmediev, Phys. Lett. A 378, 358 (2014). 7. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, Phys. Rev. E 81, 046602 (2010). 8. R. Hirota, J. Math. Phys. 14, 805 (1973). 9. L. Wei, Q. De-Qin, and H. Jing-Song, Comm. Theor. Phys. 63, 525 (2015). 10. Y. Yang, X. Wang, and Z. Yan, Nonlin. Dynam. 81, 833 (2015). 11. J. S. Hesthaven, J. J. Rasmussen, L. Bergé, and J. Wyller, J. Phys. A: Math. Gen. 30, 8207 (1997). 12. A. Ankiewicz, J. M. Soto-Crespo, M. A. Chowdhury, and N. Akhmediev, J. Opt. Soc. Am. B 30, 87 (2013). 13. F. Calogero, Lett. Nuovo Cimento 14, 443 (1975). 14. V. E. Zakharov, The Inverse Scattering Method, Topics in Current Physics (Springer, Berlin, 1980). 15. P. G. Estévez and G. A. Hernáez, J. Nonlinear Math. Phys. 8, 106 (2001). 16. P. G. Estévez, J. Prada, and J. Villarroel, J. Phys. A: Math. Theor. 40, 7213 (2007). 17. J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, Phys. Rev. E 87, 052914 (2013). 18. J. Villarroel, J. Prada, and P. G. Estévez, Stud. Appl. Math. 122, 395 (2009). 19. J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983). | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 | |
| relation.isAuthorOfPublication | dbc02e39-958d-4885-acfb-131220e221ba | |
| relation.isAuthorOfPublication | bc6a5675-68c7-4ee0-b20c-8560937c1c25 | |
| relation.isAuthorOfPublication.latestForDiscovery | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 |
Download
Original bundle
1 - 1 of 1


