Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dissimilarity-based bipolar superbised classfication

Citation

Abstract

Frequently, the set of classes of a supervised classification problem presents an structure related to the specific features of each application context. However, standard classification models does not use to consider such an structure in their learning and reasoning processes. By means of the introduction of a bipolar approach, this paper proposes a revision of the basic notions of supervised classifiers, aimed to extend their generalization power and adaptation to problems with an structured set of classes.

Research Projects

Organizational Units

Journal Issue

Description

PART 4. STATISTICS, DATA ANALYSIS AND DATA MINING

Keywords