Minimal genus of Klein surfaces admitting an automorphism of a given order
dc.contributor.author | Bujalance García, Emilio | |
dc.contributor.author | Gamboa Mutuberria, José Manuel | |
dc.contributor.author | Martens, Gerriet | |
dc.contributor.author | Etayo Gordejuela, José Javier | |
dc.date.accessioned | 2023-06-20T16:54:36Z | |
dc.date.available | 2023-06-20T16:54:36Z | |
dc.date.issued | 1989 | |
dc.description.abstract | Let K be a compact Klein surface of algebraic genus $g\ge 2,$ which is not a classical Riemann surface. The authors show that if K admits an automorphism of order $N>2,$ then it must have algebraic genus at least $(p\sb 1-1)N/p\sb 1$ if N is prime or if its smallest prime factor, $p\sb 1$, occurs with exponent 1 in N. Otherwise the genus is at least $(p\sb 1-1)(N/p\sb 1-1)$. This result extends to bordered Klein surfaces a result of {\it E. Bujalance} [Pac. J. Math. 109, 279-289 (1983)] and is the analog for Klein surfaces of a result of {\it W. J. Harvey} [Q. J. Math., Oxf. II. Ser. 17, 86-97 (1966)] and, ultimately, of {\it A. Wiman} [Kongl. Svenska Vetenskaps-Akad. Handl., Stockholm 21, No.1 and No.3 (1895)]. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comisión Asesora de Investigación Cientifica y Técnica | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15779 | |
dc.identifier.citation | Bujalance García, E., Gamboa Mutuberria, J. M., Martens, G. & Etayo Gordejuela, J. J. «Minimal Genus of Klein Surfaces Admitting an Automorphism of a given Order». Archiv Der Mathematik, vol. 52, n.o 2, febrero de 1989, pp. 191-202. DOI.org (Crossref), https://doi.org/10.1007/BF01191274. | |
dc.identifier.doi | 10.1007/BF01191274 | |
dc.identifier.issn | 0003-889X | |
dc.identifier.officialurl | https//doi.org/10.1007/BF01191274 | |
dc.identifier.relatedurl | http://www.springerlink.com/content/p60j7tu265313n66/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57398 | |
dc.issue.number | 2 | |
dc.journal.title | Archiv der Mathematik | |
dc.page.final | 202 | |
dc.page.initial | 191 | |
dc.publisher | Birkhäuser Verlag | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Classification theory of Riemann surfaces | |
dc.subject.keyword | Real ground fields | |
dc.subject.keyword | Curves | |
dc.subject.keyword | Fuchsian groups and their generalizations | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Minimal genus of Klein surfaces admitting an automorphism of a given order | en |
dc.type | journal article | |
dc.volume.number | 52 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
relation.isAuthorOfPublication | 2275e5ec-53a7-4e0f-82d6-517cdf4cd56c | |
relation.isAuthorOfPublication.latestForDiscovery | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 |