Minimal genus of Klein surfaces admitting an automorphism of a given order
Loading...
Official URL
Full text at PDC
Publication date
1989
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Birkhäuser Verlag
Citation
Bujalance García, E., Gamboa Mutuberria, J. M., Martens, G. & Etayo Gordejuela, J. J. «Minimal Genus of Klein Surfaces Admitting an Automorphism of a given Order». Archiv Der Mathematik, vol. 52, n.o 2, febrero de 1989, pp. 191-202. DOI.org (Crossref), https://doi.org/10.1007/BF01191274.
Abstract
Let K be a compact Klein surface of algebraic genus $g\ge 2,$ which is not a classical Riemann surface. The authors show that if K admits an automorphism of order $N>2,$ then it must have algebraic genus at least $(p\sb 1-1)N/p\sb 1$ if N is prime or if its smallest prime factor, $p\sb 1$, occurs with exponent 1 in N. Otherwise the genus is at least $(p\sb 1-1)(N/p\sb 1-1)$. This result extends to bordered Klein surfaces a result of {\it E. Bujalance} [Pac. J. Math. 109, 279-289 (1983)] and is the analog for Klein surfaces of a result of {\it W. J. Harvey} [Q. J. Math., Oxf. II. Ser. 17, 86-97 (1966)] and, ultimately, of {\it A. Wiman} [Kongl. Svenska Vetenskaps-Akad. Handl., Stockholm 21, No.1 and No.3 (1895)].