Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Minimal genus of Klein surfaces admitting an automorphism of a given order

Loading...
Thumbnail Image

Full text at PDC

Publication date

1989

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Birkhäuser Verlag
Citations
Google Scholar

Citation

Bujalance García, E., Gamboa Mutuberria, J. M., Martens, G. & Etayo Gordejuela, J. J. «Minimal Genus of Klein Surfaces Admitting an Automorphism of a given Order». Archiv Der Mathematik, vol. 52, n.o 2, febrero de 1989, pp. 191-202. DOI.org (Crossref), https://doi.org/10.1007/BF01191274.

Abstract

Let K be a compact Klein surface of algebraic genus $g\ge 2,$ which is not a classical Riemann surface. The authors show that if K admits an automorphism of order $N>2,$ then it must have algebraic genus at least $(p\sb 1-1)N/p\sb 1$ if N is prime or if its smallest prime factor, $p\sb 1$, occurs with exponent 1 in N. Otherwise the genus is at least $(p\sb 1-1)(N/p\sb 1-1)$. This result extends to bordered Klein surfaces a result of {\it E. Bujalance} [Pac. J. Math. 109, 279-289 (1983)] and is the analog for Klein surfaces of a result of {\it W. J. Harvey} [Q. J. Math., Oxf. II. Ser. 17, 86-97 (1966)] and, ultimately, of {\it A. Wiman} [Kongl. Svenska Vetenskaps-Akad. Handl., Stockholm 21, No.1 and No.3 (1895)].

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections