Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A blow-up mechanism for a chemotaxis model

Loading...
Thumbnail Image

Full text at PDC

Publication date

1997

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Scuola Normale Superiore
Citations
Google Scholar

Citation

Abstract

We consider the following nonlinear system of parabolic equations: (1) ut =Δu−χ∇(u∇v), Γvt =Δv+u−av for x∈B R, t>0. Here Γ,χ and a are positive constants and BR is a ball of radius R>0 in R2. At the boundary of BR, we impose homogeneous Neumann conditions, namely: (2) ∂u/∂n=∂v/∂n=0 for |x|=R, t>0. Problem (1),(2) is a classical model to describe chemotaxis, i.e., the motion of organisms induced by high concentrations of a chemical that they secrete. In this paper we prove that there exist radial solutions of (1),(2) that develop a Dirac-delta type singularity in finite time, a feature known in the literature as chemotactic collapse. The asymptotics of such solutions near the formation of the singularity is described in detail, and particular attention is paid to the structure of the inner layer around the unfolding singularity.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections