Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A blow-up mechanism for a chemotaxis model

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T18:49:31Z
dc.date.available2023-06-20T18:49:31Z
dc.date.issued1997
dc.description.abstractWe consider the following nonlinear system of parabolic equations: (1) ut =Δu−χ∇(u∇v), Γvt =Δv+u−av for x∈B R, t>0. Here Γ,χ and a are positive constants and BR is a ball of radius R>0 in R2. At the boundary of BR, we impose homogeneous Neumann conditions, namely: (2) ∂u/∂n=∂v/∂n=0 for |x|=R, t>0. Problem (1),(2) is a classical model to describe chemotaxis, i.e., the motion of organisms induced by high concentrations of a chemical that they secrete. In this paper we prove that there exist radial solutions of (1),(2) that develop a Dirac-delta type singularity in finite time, a feature known in the literature as chemotactic collapse. The asymptotics of such solutions near the formation of the singularity is described in detail, and particular attention is paid to the structure of the inner layer around the unfolding singularity.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22658
dc.identifier.issn0391-173X
dc.identifier.officialurlhttp://www.numdam.org/item?id=ASNSP_1997_4_24_4_633_0
dc.identifier.relatedurlhttp://www.numdam.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58709
dc.issue.number4
dc.journal.titleAnnali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV
dc.language.isoeng
dc.page.final683
dc.page.initial633
dc.publisherScuola Normale Superiore
dc.relation.projectIDPB93-0438
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu51-76
dc.subject.keywordHomogeneous Neumann conditions
dc.subject.keywordDirac-delta type singularity in finite time
dc.subject.keywordinner layer around the unfolding singularity
dc.subject.ucmBiomatemáticas
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA blow-up mechanism for a chemotaxis model
dc.typejournal article
dc.volume.number24
dcterms.referencesS. D. Eidelman, Parabolic systems, North-Holland, Amsterdam, 1969. R. M. Ford - D. A. Lauffenburger, Analysis of chemotactical bacterial distribution in population migration assays using a mathematical model applicable to steep or shallow attractant gradients, Bull. Math. Biol. 53 (1991), 721–749. E. F. Keller - L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399–415. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819–824. M. A. Herrero - J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996), 583–623. M. A. Herrero - J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol. 35 (1996), 177–194. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. (1995), 1–21.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero74.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format

Collections