Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Posit Arithmetic Units for Deep Neural Networks

dc.conference.date2021
dc.conference.placeMálaga
dc.conference.titleJornadas SARTECO 20/21
dc.contributor.authorMurillo Montero, Raúl
dc.contributor.authorDel Barrio García, Alberto Antonio
dc.contributor.authorBotella Juan, Guillermo
dc.date.accessioned2023-12-01T19:16:01Z
dc.date.available2023-12-01T19:16:01Z
dc.date.issued2021
dc.description.abstractPosit™ arithmetic is a recent alternative format to the IEEE 754 standard for floating-point numbers that claims to provide compelling advantages over floats, including higher accuracy, larger dynamic range or bitwise compatibility across systems. In particular, this format is a suitable candidate to replace floating-point numbers in Deep Neural Networks (DNNs), an area of growing interest with a large computational cost. This work presents parameterized designs for multiple posit functional units, including addition, multiplication and multiply-accumulate operation, and integrate them as templates of the FloPoCo framework. Synthesis results show that the proposed arithmetic units significantly reduce the hardware requirements when compared with previous implementations. Finally, this work proposes the use of posit arithmetic for performing both DNN inference and training. Experiments on different datasets, including CIFAR-10, reveal that 16-bit posits can safely replace 32-bit floats for training, and that low-precision 8-bit posits can be used for DNN inference with negligible accuracy drop.eng
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Ciencias Físicas
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipFundación BBVA
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationRaul Murillo, Alberto Antonio Del Barrio, & Guillermo Botella. (2021, septiembre 21). Posit Arithmetic Units for Deep Neural Networks. Avances en arquitectura y tecnología de computadores. Actas de las Jornadas SARTECO 20/21, Málaga.
dc.identifier.doi10.5281/zenodo.7737760
dc.identifier.isbn978-84-09-32487-3
dc.identifier.officialurlhttps://sarteco.org/jornadas-sarteco-20-21/
dc.identifier.officialurlhttps://doi.org/10.5281/zenodo.7737760
dc.identifier.relatedurlhttps://www.jornadassarteco.org/sdm_downloads/actas-jornadas-paralelismo-20-21/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91048
dc.language.isoeng
dc.page.final622
dc.page.initial617
dc.relation.projectIDcm/
dc.rightsAttribution-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ucmHardware
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.18 Sistemas de Información, Diseño Componentes
dc.titlePosit Arithmetic Units for Deep Neural Networksen
dc.title.alternativeUnidades Aritméticas Posit para Redes Neuronales Profundases
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationd08b5d10-697d-4104-9cb1-1fc7db6ecec6
relation.isAuthorOfPublication53f86d34-b560-4105-a0bc-a8d1994153ab
relation.isAuthorOfPublicationf94b32c6-dff7-4d98-9c7a-00aad48c2b6a
relation.isAuthorOfPublication.latestForDiscoveryd08b5d10-697d-4104-9cb1-1fc7db6ecec6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Posit_Arithmetic.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format

Collections