Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Posit Arithmetic Units for Deep Neural Networks

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Raul Murillo, Alberto Antonio Del Barrio, & Guillermo Botella. (2021, septiembre 21). Posit Arithmetic Units for Deep Neural Networks. Avances en arquitectura y tecnología de computadores. Actas de las Jornadas SARTECO 20/21, Málaga.

Abstract

Posit™ arithmetic is a recent alternative format to the IEEE 754 standard for floating-point numbers that claims to provide compelling advantages over floats, including higher accuracy, larger dynamic range or bitwise compatibility across systems. In particular, this format is a suitable candidate to replace floating-point numbers in Deep Neural Networks (DNNs), an area of growing interest with a large computational cost. This work presents parameterized designs for multiple posit functional units, including addition, multiplication and multiply-accumulate operation, and integrate them as templates of the FloPoCo framework. Synthesis results show that the proposed arithmetic units significantly reduce the hardware requirements when compared with previous implementations. Finally, this work proposes the use of posit arithmetic for performing both DNN inference and training. Experiments on different datasets, including CIFAR-10, reveal that 16-bit posits can safely replace 32-bit floats for training, and that low-precision 8-bit posits can be used for DNN inference with negligible accuracy drop.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections