Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

High Quality Ti-Implanted Si Layers Above Solid Solubility Limit

dc.book.titleProceedings of the 2009 Spanish Conference on Electron Devices
dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T13:40:58Z
dc.date.available2023-06-20T13:40:58Z
dc.date.issued2009
dc.descriptionSpanish Conference on Electron Devices (7.2009.Santiago de Compostela). © 2009 IEEE. Authors would like to acknowledge the Nanotechnology and Surface Analysis Services of the Universidad de Vigo CAC.TI. for SIMS measurements, C.A.I. de Difracción de Rayos X of the Universidad Complutense de Madrid for GIXDR measurements, C.A.I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments and C.A.I. de Microscopía Electrónica "Luis Bru" for TEM images. This work was made possible thanks to the FPI program (Grant No. BES-2005-7065) of the Ministerio de Educación y Ciencia, and was partially supported by the Projects NUMANCIA (No. S-0505/ENE/000310) founded by the Comunidad de Madrid and GENESIS-FV (No. CSD2006-00004) funded by the Spanish Consolider National Program and by U.C.M.-C.A.M. under Grant CCG07-UCM/TIC-2804.
dc.description.abstractIn this work we report the successful doping of Si with Ti at doses beyond the Mott limit for this element keeping high lattice quality. Ti implantation in Si at high doses and subsequent Pulsed-Laser Melting (PLM) annealing have been performed. Time-of-Flight Secondary Ion Mass Spectroscopy (SIMS) measurements confirm that Ti concentration exceed the Mott limit in the implanted layer, and Glancing Incidence X-Ray Diffraction (GIXRD) and Transmission Electron Microscopy (TEM) measurements prove that good crystallinity can be achieved over solid solubility limit. Hall effect characterization points out a high electrical activation and high mobility in all samples.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFPI program of the Ministerio de Educación y Ciencia
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipSpanish Consolider National Program
dc.description.sponsorshipU.C.M.-C.A.M.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25913
dc.identifier.doi10.1109/SCED.2009.4800424
dc.identifier.isbn978-1-4244-2838-0
dc.identifier.officialurlhttp://dx.doi.org/10.1109/SCED.2009.4800424
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53365
dc.language.isoeng
dc.page.final41
dc.page.initial38
dc.page.total4
dc.publisherIEEE
dc.relation.projectIDBES-2005-7065
dc.relation.projectIDProject NUMANCIA-S-0505/ENE/000310
dc.relation.projectIDProject GENESIS-FV-CSD2006-00004
dc.relation.projectIDCCG07-UCM/TIC-2804
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSolar-Cells
dc.subject.keywordEfficiency.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleHigh Quality Ti-Implanted Si Layers Above Solid Solubility Limit
dc.typebook part
dcterms.references1) A. Martí and A. Luque, "Next generation photovoltaics: high efficiency through full spectrum utilization," Institute of Physics Publishing, Bristol, UK, 2004. 2) Luque and A. Martí, "Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels," Phys. Rev. Lett., vol. 78, no. 26, pp. 5014-5017, Jun. 1997. 3) M. A. Green, "Third generation of photovoltaics" (Springer, Berlinm Germany, 2005). 4) W. Shockley and H.J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys., vol. 32, pp. 510-519, 1961. 5) A. Luque et al., "Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells," Appl. Phys. Lett., vol. 87, no. 8, pp. 083505.1-083505.3, Aug. 2005. 6) K. M. Yu, M. A. Scarpulla, R. Farshchi, O. D. Dubon and W. Walukiewicz, "Synthesis of highly mismatched alloys using ion implantation and pulsed laser annealing," Nucl. Instrum. Methods B, vol. 261, p. 1150, Mar. (2007). 7) N. F. Mott, "Metal Insulator Transition," Rev. Mod. Phys., vol. 40, no. 4, pp. 677-683, Oct. 1968. 8) S. Hocine and D. Mathiot, "Titanium diffusion in silicon," Appl. Phys. Lett., vol. 53, no. 14, pp. 1269-1271, Oct. 1988. 9) K. M. Yu et al., "Multiband GaNAsP quaternary alloys," Appl. Phys. Lett., vol. 88, no. 9, pp. 092110.1-092110.3, Mar. 2006. 10) P. Wahnón, Universidad Politécnica de Madrid, Madrid, Spain, private communication, Jul. 2008. 11) J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz and I. Mártil, "Titanium doped silicon layers with very high concentration," J. Appl. Phys., vol. 104, pp. 016105.1-3, Jul. 2008. 12) M. H. Clark and K. S. Jones, "Strain compensation in boron-indium coimplanted laser thermal processed silicon," J. Appl. Phys., vol. 97, pp. 093525.1-4, Apr. 2005. 13) D. B. Williams and B. C. Carter, "Transmission electron microscopy. II, Diffraction," Plenum Press, cop., New York, USA, 1996.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,24.pdf
Size:
4.85 MB
Format:
Adobe Portable Document Format