Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Linearly continuous maps discontinuous on the graphs of twice differentiable functions

Loading...
Thumbnail Image

Official URL

Full text at PDC

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

A function g : R n → R is linearly continuous provided its restriction g ` to every straight line ` ⊂ R n is continuous. It is known that the set D(g) of points of discontinuity of any linearly continuous g : R n → R is a countable union of isometric copies of (the graphs of) f P, where f : R n−1 → R is Lipschitz and P ⊂ R n−1 is compact nowhere dense. On the other hand, for every twice continuously differentiable function f : R → R and every nowhere dense perfect P ⊂ R there is a linearly continuous g : R 2 → R with D(g) = f P. The goal of this paper is to show that this last statement fails, if we do not assume that f 00 is continuous. More specifically, we show that this failure occurs for every continuously differentiable function f : R → R with nowhere monotone derivative, which includes twice differentiable functions f with such property. This generalizes a recent result of professor Ludek Zajicek and fully solves a problem from a 2013 paper of the first author and Timothy Glatzer.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections