Linearly continuous maps discontinuous on the graphs of twice differentiable functions
dc.contributor.author | Krzysztof, Chris | |
dc.contributor.author | Rodríguez-Vidanes, D.L. | |
dc.date.accessioned | 2023-06-21T02:18:08Z | |
dc.date.available | 2023-06-21T02:18:08Z | |
dc.description.abstract | A function g : R n → R is linearly continuous provided its restriction g ` to every straight line ` ⊂ R n is continuous. It is known that the set D(g) of points of discontinuity of any linearly continuous g : R n → R is a countable union of isometric copies of (the graphs of) f P, where f : R n−1 → R is Lipschitz and P ⊂ R n−1 is compact nowhere dense. On the other hand, for every twice continuously differentiable function f : R → R and every nowhere dense perfect P ⊂ R there is a linearly continuous g : R 2 → R with D(g) = f P. The goal of this paper is to show that this last statement fails, if we do not assume that f 00 is continuous. More specifically, we show that this failure occurs for every continuously differentiable function f : R → R with nowhere monotone derivative, which includes twice differentiable functions f with such property. This generalizes a recent result of professor Ludek Zajicek and fully solves a problem from a 2013 paper of the first author and Timothy Glatzer. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN)/FEDER | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/73499 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65274 | |
dc.language.iso | eng | |
dc.relation.projectID | PGC2018-097286-B-I00; PRE2019-089135 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517 | |
dc.subject.keyword | Differentiable nowhere monotone functions | |
dc.subject.keyword | Linearly continuous functions | |
dc.subject.keyword | Separate continuity | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Linearly continuous maps discontinuous on the graphs of twice differentiable functions | |
dc.type | journal article | |
dcterms.references | [1] R.L. Baire, Sur les fonctions de variables r´eelles, Ann. Matern. Pura ed Appl. (ser. 3) 3 (1899), 1–123 (French). [2] Taras Banakh and Oleksandr Maslyuchenko, Linearly continuous functions and Fσ�measurability, Eur. J. Math. 6 (2020), no. 1, 37–52, DOI 10.1007/s40879-019-00385-w. [3] A.-L. Cauchy, Analyse algébrique, Cours d’Analyse de l’Ecole Royale Polytechnique. [Course in Analysis of the Ecole Royale Polytechnique], ´ Editions Jacques Gabay, Sceaux, 1989 (French). Reprint of the 1821 edition [4] , Cours d’analyse de l’Ecole Royale Polytechnique ´ , Cambridge Library Collection, Cambridge University Press, Cambridge, 2009 (French). Reprint of the 1821 original. [5] Krzysztof Chris Ciesielski, Monsters in calculus, Amer. Math. Monthly 125 (2018), no. 8, 739–744, DOI 10.1080/00029890.2018.1502011. [6] Krzysztof Chris Ciesielski and Timothy Glatzer, Sets of discontinuities of linearly contin�uous functions, Real Anal. Exchange 38 (2012/13), no. 2, 377–389. [7] , Sets of discontinuities for functions continuous on flats, Real Anal. Exchange 39 (2013/14), no. 1, 117–138. [8] Krzysztof Chris Ciesielski and David Miller, A continuous tale on continuous and sepa�rately continuous functions, Real Anal. Exchange 41 (2016), no. 1, 19–54, DOI 10.14321/re�alanalexch.41.1.0019. [9] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. [10] A. Genocchi and G. Peano, Calcolo differentiale e principii di Calcolo, Torino, 1884. [11] Richard Kershner, The continuity of functions of many variables, Trans. Amer. Math. Soc. 53 (1943), 83–100, DOI 10.2307/1990133. [12] H. Lebesgue, Sur l’approximation des fonctions, Bull. Sciences Math, 22 (1898), 278–287. [13] H. Lebesgue, Sur les fonctions repr´esentables analytiquement, J. Math. Pure Appl. 6 (1905), 139-216. [14] S.G. Slobodnik, An Expanding System of Linearly Closed Sets, Mat. Zametki 19 (1976), 67–84; English translation Math Notes 19 (1976), 39–48. [15] J. Thomae, Abriss einer Theorie der complexen Funktionen und der Thetafunktionen einer Ver¨anderlichen, Halle, 1873. (First edition published in 1870.) [16] Ludek Zajıcek, A remark on functions continuous on all lines, Comment. Math. Univ. Carolin. 60 (2019), no. 2, 211–218, DOI 10.14712/1213-7243.2019.003. [17] Ludek Zajıcek, On sets of discontinuities of functions continuous on all lines, preprint of January 3, 2022, https://arxiv.org/abs/2201.00772v1. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- rodriguezvidanes_linearly.pdf
- Size:
- 323.47 KB
- Format:
- Adobe Portable Document Format