Energetic Stability Criterion for a Nonlinear Spinorial Model

dc.contributor.authorÁlvarez Alonso, Amador
dc.contributor.authorSoler, M.
dc.date.accessioned2023-06-21T02:08:23Z
dc.date.available2023-06-21T02:08:23Z
dc.date.issued1983-04-25
dc.description© 1983 The American Physical Society. We wish to thank Dr. J. Guasp and Dr. A. I.opez Fraguas for their help, and acknowledge the partial financial support from Instituto de Estudios Nucleares, Junta de la Energia Nulcear.
dc.description.abstractThe time evolution of expanded and contracted solitary waves of the Dirac field with scalar self-interaction is exhibited. It is shown that the positivity of the second variation of the energy functional is not a necessary condition for the stability of these waves as has been recently suggested.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipInstituto de Estudios Nucleares, Junta de la Energia Nulcear
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27802
dc.identifier.doi10.1103/PhysRevLett.50.1230
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://journals.aps.org/prl/abstract/10.1103/PhysRevLett.50.1230
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64958
dc.issue.number17
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.final1233
dc.page.initial1230
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleEnergetic Stability Criterion for a Nonlinear Spinorial Model
dc.typejournal article
dc.volume.number50
dcterms.references1 V. G. Makhankov, Phys. Rep. 35, 1 (1978). 2 I. L. Bogolubsky, Phys. Lett. 73A, 87 (1979); J.Werle, Acta Phys. Pol. B 12, 601 (1981). 3 Q. N. Derrick, J. Math. Phys. (N.Y.) 5, 1252 (1964). See especially Sec. 3b. 4 A. F. Ranada, in Quantum Theory, Groups, Fields, and Particles, edited by A. O. Barut (Reidel, Dordrecht, Netherlands, 1982). 5 M. Soler, University of Zaragoza Report No. GIFT 10/75 (unpublished) . 6 The claim of soliton instability contained in the first paper of;Ref. 2 is obviously due to the use of a defective numerical scheme. Convergence of the numerical methods used in both this Letter and A. Álvarez and B. Carreras, Phys. Lett. 85A, 327 (1981), is proved by A. Álvarez, Kuo Pen-Yu, and L. Vázquez, "The Numerical Study of a Nonlinear One-Dimensional Dirac Equation" (to be published). 7 D. J. Gross and A. Neveu, Phys. Bev. D 10, 3235 (1974). 8 S. Y. Lee, T. K. Kuo, and A. Gaurielides, Phys. Rev. D 12, 2249 (1975);P. Kaus, Phys. Rev. D 14, 1722 (1976). 9 Álvarez and Carreras, Ref. 6. 10 R. J. Finkelstein, C. Fronsdal, and P. Kaus, Phys. Rev. 103, 1571 (1956). 11 M. Soler, Phys. Bev. D 1, 2766 (1970). 12 L. García and A. F. Rañada, Prog. Theor. Phys. 64, 671 (1980),and references therein.
dspace.entity.typePublication
relation.isAuthorOfPublication45caaf9b-7358-45de-8704-5575bae71835
relation.isAuthorOfPublication.latestForDiscovery45caaf9b-7358-45de-8704-5575bae71835

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ÁlvarezAlonsoA04Libre.pdf
Size:
264.43 KB
Format:
Adobe Portable Document Format

Collections