Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Vectorial Ribaucour transformations for the Lame equations

dc.contributor.authorLiu, Q. P.
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-20T20:09:16Z
dc.date.available2023-06-20T20:09:16Z
dc.date.issued1998-03-13
dc.description©IOP Publishing LTD. M. M. would like to thank several conversations with A. Doliwa and P. M. Santini. In particular, A. Doliwa’s historical remarks were quite useful.
dc.description.abstractThe vectorial extension of the Ribaucour transformation for the Lame equations bf orthogonal conjugate nets in multidimensions is given. We show that the composition of two vectorial Ribaucour transformations with appropriate transformation data is again a vectorial Ribaucour transformation, from which follows the permutability of the vectorial Ribaucour transformations. Finally, as an example we apply the vectorial Ribaucour transformation to the Cartesian background.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32499
dc.identifier.doi10.1088/0305-4470/31/10/003
dc.identifier.issn0305-4470
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0305-4470/31/10/003
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/solv-int/9710014
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59696
dc.issue.number10
dc.journal.titleJournal of Physics A-Mathematical and General
dc.language.isoeng
dc.page.finalL200
dc.page.initialL193
dc.publisherIOP Publishing LTD
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleVectorial Ribaucour transformations for the Lame equations
dc.typejournal article
dc.volume.number31
dcterms.references[1] L. Bianchi, Rendi. Lincei 13 (1904) 361. [2] L. Bianchi, Lezioni di Geometria Differenziale, 3-a ed., Zanichelli, Bologna (1924). [3] G. Darboux, Leçons sur la théorie générale des surfaces IV, GauthierVillars, Paris (1896) Reprinted by Chelsea Publishing Company, New York (1972). [4] G. Darboux, Leçons sur les systèmes orthogonaux et les coordenées curvilignes (deuxième édition), Gauthier-Villars, Paris (1910) (the first edition was in 1897). Reprinted by Éditions Jacques Gabay, Sceaux (1993). [5] M. A. Demoulin, Comp. Rend. Acad. Sci. Paris 150 (1910) 156. [6] A. Doliwa, P. M. Santini and M. Mañas, Transformations for Quadrilateral Lattices, to appear (1997). [7] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., Boston (1909). [8] L. P. Eisenhart, Trans. Amer. Math. Soc. 18 (1917) 111. [9] L. P. Eisenhart, Transformations of Surfaces, Princeton University Press, Princeton (1923). Reprinted by Chelsea Publishing Company, New York (1962). [10] E. I. Ganzha and S. P. Tsarev, On superposition of the autoBäcklund transformations for (2+1)-dimensional integrable systems, solv-int/9606003. [11] H. Jonas, Berl. Math. Ges. Ber. Sitzungsber. 14 (1915) 96. [12] B. G. Konopelchenko and W. K. Schief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations, Preprint Applied Mathematics 93/9, University of New South Wales (1993). [13] G. Lamé, Le¸cons sur la théorie des oordenées curvilignes et leurs diverses applications, Mallet-Bachalier, Paris (1859). [14] M. Mañaas, A. Doliwa and P. M. Santini, Phys. Lett. 232 A (1997) 365. [15] A. Ribaucour, Comp. Rend. Acad. Sci. Paris 74 (1872) 1489. [16] W. K. Schief, Inv. Prob. 10 (1994) 1185. [17] S. P. Tsarev, Classical differential geometry and integrability of systems of hydrodynamic type, in Applications of analytic and geometrical methods to nonlinear differential equations, ed. P. A. Clarkson, Kluwer, Dortrecht (1993). [18] V. E. Zakharov, On Integrability of the Equations Describing NOrthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type I: Integration of the Lamé Equations Preprint (1996). [19] V. E. Zakharov and S. V. Manakov, Func. Anal. Appl. 19 (1985) 11.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas39preprint.pdf
Size:
126.24 KB
Format:
Adobe Portable Document Format

Collections