Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We study the differentiability of very weak solutions v is an element of L(1) (Omega) of (v, L* phi)(0) = (f, phi)(0) for all phi is an element of C(2)((Omega) over bar) vanishing at the boundary whenever f is in L(1) (Omega, delta), with delta = dist(x, partial derivative Omega), and L* is a linear second order elliptic operator with variable coefficients. We show that our results are optimal. We use symmetrization techniques to derive the regularity in Lorentz spaces or to consider the radial solution associated to the increasing radial rearrangement function (f) over tilde of f.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections