Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorRakotoson, Jean Michel Theresien
dc.date.accessioned2023-06-20T00:11:31Z
dc.date.available2023-06-20T00:11:31Z
dc.date.issued2009-08-01
dc.description.abstractWe study the differentiability of very weak solutions v is an element of L(1) (Omega) of (v, L* phi)(0) = (f, phi)(0) for all phi is an element of C(2)((Omega) over bar) vanishing at the boundary whenever f is in L(1) (Omega, delta), with delta = dist(x, partial derivative Omega), and L* is a linear second order elliptic operator with variable coefficients. We show that our results are optimal. We use symmetrization techniques to derive the regularity in Lorentz spaces or to consider the radial solution associated to the increasing radial rearrangement function (f) over tilde of f.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion, Spain
dc.description.sponsorshipDGUIC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15112
dc.identifier.doi10.1016/j.jfa.2009.03.002
dc.identifier.issn0022-1236
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022123609001177
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42162
dc.issue.number3
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.final831
dc.page.initial807
dc.publisherElsevier
dc.relation.projectIDMTM2008-06208
dc.relation.projectIDCCG07-UCM/ESP-2787
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordVery weak solutions
dc.subject.keywordDistance to the boundary
dc.subject.keywordRegularity
dc.subject.keywordLinear PDE
dc.subject.keywordMonotone rearrangement
dc.subject.keywordLorentz space
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleOn the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary
dc.typejournal article
dc.volume.number257
dcterms.referencesC. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, London, 1983. I. Birindelli, F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6) 13 (2) (2004) 261–287. L. Boccardo, T. Gallouët, Non-linear elliptic and parabolic equations involving measure as data, J. Funct. Anal. 87 (1989) 149–169. H. Brezis, Personal communication to J.I. Díaz: Une équation semi-linéaire avec conditions aux limites dans L1, unpublished. H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for ut − _u = g(u) revisited, Adv. Differential Equations 1 (1996) 73–90. X. Cabré, Y. Martel, Weak eigenfunctions for the linearization of extremal elliptic problems, J. Funct. Anal. 156 (1998) 30–56. J.I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Res. Notes Math., vol. 106, Pitman, London, 1985. J.I. Díaz, J.M. Rakotoson, On very weak solutions of semilinear elliptic equations with right hand side data integrable with respect to the distance to the boundary, in preparation. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. H.-Ch. Grunau, G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Nachr. 307 (1997) 89–102. L. Korkut, M. Pasic, D. Zubrini´c, A singular ODE related to quasilinear elliptic equations, Electron. J. Differential Equations 12 (2000) 1–37. P. Quittner, P. Souplet, Superlinear Parabolic Problems, Birkhäuser, Basel, 2007. J.M. Rakotoson, Quasilinear elliptic problems with measure as data, Differential Integral Equations 4 (3) (1991) 449–457. J.M. Rakotoson, Réarrangement Relatif: un instrument d’estimation dans les problèmes aux limites, Springer- Verlag, Berlin, 2008. J.E. Rakotoson, J.M. Rakotoson, Analyse fonctionnelle appliquée aux équations aux dérivées partielles, P.U.F., Paris, 1999. C. Simader, On Dirichlet’s Boundary Value Problem and Lp Theory Based on Generalization of Gårding’s Inequality, Lecture Notes in Math., vol. 268, Springer-Verlag, New York, 1972. L. Veron, Singularities of Solutions of Second Order Quasilinear Equations, Longman, Edinburgh Gate, Harlow, 1995, pp. 176–180.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
14.pdf
Size:
216.08 KB
Format:
Adobe Portable Document Format

Collections