Modelling the impacts of climte change on hábitat suitabilityy and vulnerability in deciduous forest in Spain

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

del Río, Canas, Cano, Cano-Ortiz, Musarella, Pinto-Gomes, & Penas. (2021). Modelling the impacts of climate change on habitat suitability and vulnerability in deciduous forests in Spain. Ecological Indicators, 131. https://doi.org/10.1016/J.ECOLIND.2021.108202

Abstract

Global change is expected to impact on the distribution and abundance of forests. Spain represents the south western limit of distribution for several types of deciduous forests and, as part of the Mediterranean Basin, it has all theb characteristics to be affected by climate change. This study analyses the effects of climate change on habitat suitability and vulnerability in four categories of deciduous forests: Fagus sylvatica L., Quercus petraea (Matt.) Leibl., Quercus robur L. and Betula celtiberica Rothm. and Vasc. The approach combines an ensemble platform for species distribution models (SDMs) using three algorithms applied to four global circulation models (GCMs) driven by two representative concentration pathways (RCPs). Bioclimatic, biogeographic, soil and topographic variables were taken into consideration as predictors to build 320 single distribution models. Ensemble-forecasting models were then produced for each forest category and RCPs by computing a consensus of single-model projections. The adapted proposal of the Intergovernmental Panel on Climate Change (IPCC) was also applied to deal with the uncertainty and notify the likelihood of the outcomes. The study also highlights the importance and usefulness of conducting analyses at the biogeographic level, since the effects of climate change may be different and require management and conservation policies at local level.

Research Projects

Organizational Units

Journal Issue

Description

Referencias bibliográficas: • Álamo, C., Sardinero, S., Bouso, V., Hernandez, G., Pérez-Badia, R., Fernández-González, F. 2010. Los abedulares del Parque Nacional de Cabañeros: sistemática, demografia, biologia reproductiva y estratégias de conservación. 275–310. • Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259. 10.1016/j.foreco.2009.09.001 • Alfaro-Saiz, E., García-González, M.E., del Río, S., Penas, Rodríguez, A., Alonso-Redondo, R., 2015. Incorporating bioclimatic and biogeographic data in the construction of species distribution models in order to prioritize searches for new populations of threatened flora. Plant Biosyst. 149. 10.1080/11263504.2014.976289 • Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. 10.1111/j.1365-2664.2006.01214.x • Amblar Francés, P., Casado Calle, M.J., Pastor Saavedra, A., Ramos Calzado, P., Rodríguez Camino, E. 2017. Guía de escenarios regionalizados de cambio climático sobre España a partir de los resultados del IPCC-AR5, Guía de escenarios regionalizados de cambio climático sobre España a partir de los resultados del IPCC-AR5. 10.31978/014-17-010-8. • Aparício, S., Carvalhais, N., and Seixas, J. 2015. Climate change impacts on the vegetation carbon cycle of the Iberian Peninsula—Intercomparison of CMIP5 results. J. Geophys. Res. Biogeosci., 120, 641– 660. doi: 10.1002/2014JG002755. • Aranda, I. 2015. Vulnerabilidad del haya (Fagus sylvatica L.) antes un escenario de incremento de la intensificación y recurrencia de los periodos secos. In: Herrero A & Zavala MA (dir.). Los Bosques y la Biodiversidad frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España. Documento de Síntesis. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid. 199-206. • Araújo, M.B., New, M., 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 10.1016/j.tree.2006.09.010 • Araújo, M.B., Pearson, R.G., 2005. Equilibrium of species’ distributions with climate. Ecography (Cop.). 10.1111/j.2005.0906-7590.04253.x • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett. 10.1111/j.1461-0248.2011.01736.x. • Benito Garzón, M., Sánchez De Dios, R., Sainz Ollero, H., 2008. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 11, 169–178. 10.3170/2008-7-18348 • Bonan, G.B., 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882), 1444:1449. 10.1126/science.1155121 • Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 10.1051/forest:2006042 • Buisson, L., Thuiller, W., Casajus, N., Lek, S., Grenouillet, G., 2010. Uncertainty in ensemble forecasting of species distribution. Glob. Chang. Biol. 16, 1145–1157. 10.1111/j.1365-2486.2009.02000.x • Buras, A., Menzel, A., 2019. Projecting tree species composition changes of european forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1–13. 10.3389/fpls.2018.01986 • Casalegno, S., Amatulli, G., Bastrup-Birk, A., Durrant, T.H., Pekkarinen, A., 2011. Modelling and mapping the suitability of European forest formations at 1-km resolution. Eur. J. For. Res. 130, 971–981. 10.1007/s10342-011-0480-x • Castaño-Santamaría, J., López-Sánchez, C.A., Ramón Obeso, J., Barrio-Anta, M., 2019. Modelling and mapping beech forest distribution and site productivity under different climate change scenarios in the Cantabrian Range (North-western Spain). For. Ecol. Manage. 450. 10.1016/j.foreco.2019.117488 • de Castro, M., Martín-Vide, J., Alonso, S., 2005. El clima de España, pasado, presente y futuro y escenario se clima para el siglo XXI, in: Moreno, J.M. (Ed.), Evaluación Preliminar de Los Impactos En España Por Efecto Del Cambio Climático. Ministerio de Medio Ambiente. 1–64. • del Río, S., Álvarez-Esteban, R., Cano, E., Pinto-Gomes, C., Penas, Á., 2018. Potential impacts of climate change on habitat suitability of Fagus sylvatica L. forests in spain. Plant Biosyst. 152. 10.1080/11263504.2018.1435572 • del Rio, S., Cano-Ortiz, A., Herrero, L., Penas, A., 2012. Recent trends in mean maximum and minimum air temperatures over Spain (1961-2006). Theor. Appl. Climatol. 109, 605–626. 10.1007/s00704-012-0593-2 • del Rio, S., Herrero, L., Pinto-Comes, C., Penas, A. 2011a. Spatial analysis of mean temperature trends in Spain over the period 1961-2006. Glob. Planet. Change 78, 65–75. 10.1016/j.gloplacha.2011.05.012 • del Río, S. del, Herrero, L., Fraile, R., Penas, A. 2011b. Spatial distribution of recent rainfall trends in Spain (1961–2006). Int. J. Climatol. 31, 656–667. 10.1002/joc.2111 • del Río, S., Penas, A., Pérez-Romero, R., 2005a. Potential areas of deciduous forests in Spain (Castile and Leon) according to future climate change, in: Plant Biosystems. 10.1080/11263500500158835. • del Rio, S., Penas, A., Fraile, R., 2005b. Analysis of recent climatic variations in Castile and Leon (Spain). Atmos. Res. 73, 69–85. 10.1016/j.atmosres.2004.06.005 • Denk, T., 2003. Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Syst. Evol. 240. 10.1007/s00606-003-0018-x • Ducousso, A., Bordacs, S., 2004. EUFORGEN Technical Guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur and Q. petraea). Int. Plant Genet. Resour. Inst. • Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M., Leuschner, C., 2017. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees - Struct. Funct. 31. 10.1007/s00468-016-1499-x • Dunckel, K., Weiskittel, A., Fiske, G., 2017. Projected future distribution of Tsuga canadensis across Alternative climate scenarios in Maine, U.S. Forests 8. 10.3390/f8080285. • Dyderski, M.K., Paź, S., Frelich, L.E., Jagodziński, A.M., 2018. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 24. 10.1111/gcb.13925 • EEC. 1992. Council directive 92/43/CEE of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L, 206: 7–50 • Ellenberg, H., 1988. Vegetation ecology of Central Europe. Fourth edition. Veg. Ecol. Cent. Eur. Fourth Ed. • ESRI, 2010. ArcGIS, Version 10.1. ESRI, Redlands California, USA. • Estiarte, M., Peñuelas, J., 2015. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Efects on nutrient proficiency. Glob. Chang. Biol. 21. 10.1111/gcb.12804 • Falk, W., Hempelmann, N., 2013. Species Favourability Shift in Europe due to Climate Change: A Case Study for Fagus sylvatica L. and Picea abies (L.) Karst. Based on an Ensemble of Climate Models. J. Climatol. 2013. 10.1155/2013/787250. • Fan, Z., Bai, R., Yue, T., 2020. Scenarios of land cover in Eurasia under climate change. J. Geogr. Sci. 30. 10.1007/s11442-020-1711-1 • Fang, J., Lechowicz, M.J., 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world\rdoi:10.1111/j.1365-2699.2006.01533.x. J. Biogeogr. 33. • Felicísimo AM, Muñoz J, Mateo RG, V.C., 2012. Vulnerabilidad de la flora y vegetación españolas ante el cambio climático. Ecosistemas 21. • Fibbi, L., Moriondo, M., Chiesi, M., Bindi, M., Maselli, F., 2019. Impacts of climate change on the gross primary production of Italian forests. Ann. For. Sci. 76. 10.1007/s13595-019-0843-x • Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24. 10.1017/S0376892997000088 • Font, I., 2000. Climatología de España y Portugal, Ediciones Universidad de Salamanca. • Freeman, E.A., Moisen, G.G., 2008. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Modell. 217. 10.1016/j.ecolmodel.2008.05.015 • Gavilán, R.G., Vilches, B., Gutiérrez-Girón, A., Blanquer, J.M., Escudero, A., 2018. Sclerophyllous Versus Deciduous Forests in the Iberian Peninsula: A Standard Case of Mediterranean Climatic Vegetation Distribution, in: Geobotany Studies. 10.1007/978-3-319-68738-4_5. • Geßler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., Rennenberg, H., 2007. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees - Struct. Funct. 10.1007/s00468-006-0107-x • Gonzalez-Hidalgo, J.C., Brunetti, M., de Luis, M., 2011. A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends December 1945-November 2005). Int. J. Climatol. 31, 715–731. 10.1002/joc.2115 • Gonzalez-Hidalgo, J.C., Peña-Angulo, D., Beguería, S., Brunetti, M., 2020. MOTEDAS century: A new high-resolution secular monthly maximum and minimum temperature grid for the Spanish mainland (1916–2015). Int. J. Climatol. 40. 10.1002/joc.6520 • Gould, S.F., Beeton, N.J., Harris, R.M.B., Hutchinson, M.F., Lechner, A.M., Porfirio, L.L., Mackey, B.G., 2014. A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecol. Evol. 4. 10.1002/ece3.1319 • Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P., Grünwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Köstner, B., Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D., Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, T., Wang, Q., 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol. 143. 10.1016/j.agrformet.2006.12.004 • Guiot, J., Cramer, W., 2016. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science (80-.). 354, 465. 10.1126/science.aah5015. • Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., Mcdonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P., Buckley, Y.M., 2013. Predicting species distributions for conservation decisions. Ecol. Lett. 16. 10.1111/ele.12189 • Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135. 10.1016/S0304-3800(00)00354-9 • Hemery, G.E., Clark, J.R., Aldinger, E., Claessens, H., Malvolti, M.E., O'Connor, E., Raftoyannis, Y., Savill, P.S., Brus, R., 2010. Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. For. An Int. J. For. Res. 83, 65–81. 10.1093/forestry/cpp034 • Hertel, D., Strecker, T., Müller-Haubold, H., Leuschner, C., 2013. Fine root biomass and dynamics in beech forests across a precipitation gradient - Is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 101. 10.1111/1365-2745.12124 • Hu, J., Jiang, Z., 2011. Climate change hastens the conservation urgency of an endangered ungulate. PLoS One 6. 10.1371/journal.pone.0022873 • IPCC, 2001. Climate Change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp. • IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ipcc. • Jarvie, S., Svenning, J.C., 2018. Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Philos. Trans. R. Soc. B Biol. Sci. 373. 10.1098/rstb.2017.0446 • Jiménez-Valverde, A., 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21. 10.1111/j.1466-8238.2011.00683.x. • Jiménez-Valverde, A., Lobo, J.M., 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica 31. 10.1016/j.actao.2007.02.001 • Jump, A.S., Hunt, J.M., Pen̈uelas, J., 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Chang. Biol. 12. 10.1111/j.1365-2486.2006.01250.x • Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 170122. 10.1038/sdata.2017.122 • Klausmeyer, K.R., Shaw, M.R., 2009. Climate change, habitat loss, protected areas and the climate adaptation potential of species in mediterranean ecosystems worldwide. PLoS One 4. 10.1371/journal.pone.0006392 • Knutzen, F., Meier, I.C., Leuschner, C., 2015. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 35. 10.1093/treephys/tpv057 • Köcher, P., Gebauer, T., Horna, V., Leuschner, C., 2009. Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann. For. Sci. 66. 10.1051/forest/2008076 • Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M.T., de Winter, W., 2010. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-Range, abundance, genetic diversity and adaptive response. For. Ecol. Manage. 259. 10.1016/j.foreco.2009.12.023 • Leuschner, C., Backes, K., Hertel, D., Schipka, F., Schmitt, U., Terborg, O., Runge, M., 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For. Ecol. Manage. 149. 10.1016/S0378-1127(00)00543-0 • Lindner, M., Fitzgerald, J.B., Zimmermann, N.E., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M.J., Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B., Hanewinkel, M., 2014. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manage. 10.1016/j.jenvman.2014.07.030 • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M.J., Marchetti, M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259. 10.1016/j.foreco.2009.09.023 • Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.). 28. 10.1111/j.0906-7590.2005.03957.x • Liu, Q., Piao, S., Campioli, M., Gao, M., Fu, Y.H., Wang, K., He, Y., Li, X., Janssens, I.A., 2020. Modeling leaf senescence of deciduous tree species in Europe. Glob. Chang. Biol. 26. 10.1111/gcb.15132 • Lobo, J.M., Jiménez-valverde, A., Real, R., 2008. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 10.1111/j.1466-8238.2007.00358.x • López-Tirado, J., Hidalgo, P.J., 2018. Predicting suitability of forest dynamics to future climatic conditions: the likely dominance of Holm oak [Quercus ilex subsp. ballota (Desf.) Samp.] and Aleppo pine (Pinus halepensis Mill.). Ann. For. Sci. 75. 10.1007/s13595-018-0702-1 • López-Tirado, J., Vessella, F., Schirone, B., Hidalgo, P.J., 2018. Trends in evergreen oak suitability from assembled species distribution models: assessing climate change in south-western Europe. New For. 49. 10.1007/s11056-018-9629-5 • Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W., 2009. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15. 10.1111/j.1472-4642.2008.00491.x • Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Edenhofer, O., Stocker, T.F., Field, C.B., Ebi, K.L., Matschoss, P.R., 2011. The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups. Clim. Change 108. 10.1007/s10584-011-0178-6 • McSweeney, C.F., Jones, R.G., Lee, R.W., Rowell, D.P., 2015. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44. 10.1007/s00382-014-2418-8 • Médail, F., Quézel, P., 1997. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann. Missouri Bot. Gard. 84. 10.2307/2399957 • Moning, C., Müller, J., 2009. Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol. Indic. 9. 10.1016/j.ecolind.2008.11.002 • Morala, L., Serrano, A., Garc, J.A., 2003. Annales Geophysicae Detecting quasi-oscillations in the monthly precipitation regimes of the Iberian Peninsula 819–832. • Morin, X., Roy, J., Sonié, L., Chuine, I., 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol. 186. 10.1111/j.1469-8137.2010.03252.x • Noce, S., Collalti, A., Santini, M., 2017. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecol. Evol. 7. 10.1002/ece3.3427 • Noce, S., Caporaso, L., Santini, M., 2019. Climate change and geographic ranges: The implications for Russian forests. Front. Ecol. Evol. 7. 10.3389/fevo.2019.00057 • Olcina Cantos, J., 2001. CAPEL MOLINA, J. J. (2000): El clima de la Península Ibérica. Editorial Ariel, colección Ariel Geografía. Barcelona, 281 p. Investig. Geográficas – Inst. Geogr. Univ. Nac. Autónoma México. • Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 10.1146/annurev.ecolsys.37.091305.110100 • Peñuelas, J., Filella, I., Comas, P., 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob. Chang. Biol. 8. 10.1046/j.1365-2486.2002.00489.x • Peñuelas, J., Boada, M., 2003. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 9. 10.1046/j.1365-2486.2003.00566.x • Peñuelas, J., Ogaya, R., Boada, M., Jump, A.S., 2007. Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography (Cop.). 30. 10.1111/j.2007.0906-7590.05247.x • Perkins, D., Uhl, E., Biber, P., du Toit, B., Carraro, V., Rötzer, T., Pretzsch, H., 2018. Impact of climate trends and drought events on the growth of oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond their natural range. Forests 9. 10.3390/f9030108. • Porfirio, L.L., Harris, R.M.B., Lefroy, E.C., Hugh, S., Gould, S.F., Lee, G., Bindoff, N.L., Mackey, B., 2014. Improving the use of species distribution models in conservation planning and management under climate change. PLoS One 9. 10.1371/journal.pone.0113749 • R Core Team, 2019. R: A language and environment for statistical computing. R Found. Stat. Comput. • Ríos Cornejo, D., Penas Merino, Á., del Río González, S., 2013. Comparative Analysis of Precipitation Trends In Continental Spain Over The Period 1961-2010. Int. J. Geobot. Res. 3. 10.5616/ijgr130001 • Ríos Cornejo, D., Penas Merino, Á., Del Río González, S., 2012. Comparative Analysis of Mean Temperature Trends in Continental Spain over the Period 1961-2010. Int. J. Geobot. Res. 2. 10.5616/ijgr120005 • Rivas-Martínez, S. (1987): Memoria del mapa de Series de Vegetación de España. I.C.O.N.A. Serie Técnica. Publ. Ministerio Agricultura, Pesca y Alimentación. Madrid. • Rivas-Martínez, S., Rivas-Sáenz, S., Penas-Merino, A., 2011. Worldwide bioclimatic classification system. Glob. Geobot. 1, 1-638 • Rivas-Martínez, S., 2011b. Mapa de series, geoseries y geopermaseries de vegetación de España - Parte II. Itinera Geobot. 18, 5-436. • Rivas-Martínez, S., Penas, Á., del Río, S., Díaz González, T.E., Rivas-Sáenz, S., 2017a. Bioclimatology of the Iberian Peninsula and the Balearic Islands. 10.1007/978-3-319-54784-8_2. • Rivas-Martínez, S., Penas, Á., Díaz González, T.E., Cantó, P., del Río, S., Costa, J.C., Herrero, L., Molero, J., 2017b. Biogeographic Units of the Iberian Peninsula and Baelaric Islands to District Level. A Concise Synopsis. 10.1007/978-3-319-54784-8_5 • Roces-Díaz, J. V., Jiménez-Alfaro, B., Álvarez-Álvarez, P., Álvarez-García, M.A., 2014. Environmental niche and distribution of six deciduous tree species in the spanish atlantic region. IForest 8. 10.3832/ifor1183-008 • Rodriguez-Puebla, C., Encinas, A.H., Nieto, S., Garmendia, J., 1998. Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int. J. Climatol. 18, 299–316. 10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L • Romero, R., Guijarro, J.A., Ramis, C., Alonso, S., 1998. A 30-year (1964 – 1993) daily rainfall data base for the spanish mediterranean regions: first exploratory. Int. J. Climatol. 18(5), 541–560. • Ruiz-Labourdette, D., Génova, M., Schmitz, M.F., Urrutia, R., Pineda, F.D., 2014. Summer rainfall variability in European Mediterranean mountains from the sixteenth to the twentieth century reconstructed from tree rings. Int. J. Biometeorol. 58. 10.1007/s00484-013-0766-4 • Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H.S., Schmitz, M.F., Pineda, F.D., 2012. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 39. 10.1111/j.1365-2699.2011.02592.x • Ruiz-Labourdette, D., Schmitz, M.F., Pineda, F.D., 2013. Changes in tree species composition in Mediterranean mountains under climate change: Indicators for conservation planning. Ecol. Indic. 24. 10.1016/j.ecolind.2012.06.021 • Sandonis, L., González-Hidalgo, J.C., Penã-Angulo, D., Begueriá, S., 2021. Mean temperature evolution on the Spanish mainland 1916-2015. Clim. Res. 82. 10.3354/CR01627 • Sanz-Elorza, M., Dana, E.D., Gonzalez, A., Sobrino, E., 2003. Changes in the high-mountain vegetation of the central Iberian peninsula as a probable sign of global warming. Ann. Bot. 92, 273–280. • Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C., Wilmking, M., 2011. Drought matters - Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For. Ecol. Manage. 262, 947–961. 10.1016/j.foreco.2011.05.026 • Gusti, A., Serrano, A., Garcia, J.A., Mateos, V.L., Cancillo, M.L., Garrido, J., 1999. Monthly modes of variation of precipitation over the Iberian peninsula. J. Clim. 12, 2894–2919. • Seyednasrollah, B., Young, A.M., Li, X., Milliman, T., Ault, T., Frolking, S., Friedl, M., Richardson, A.D., 2020. Sensitivity of Deciduous Forest Phenology to Environmental Drivers: Implications for Climate Change Impacts Across North America. Geophys. Res. Lett. 47. 10.1029/2019GL086788 • Shen, C.-F., 1992. A monograph of the genus Fagus Tourn. ex L. (Fagaceae). • Silva, D., Rezende Mazzella, P., Legay, M., Corcket, E., Dupouey, J.L., 2012. Does natural regeneration determine the limit of European beech distribution under climatic stress? For. Ecol. Manage. 266. 10.1016/j.foreco.2011.11.031 • Stojanović, D.B., Kržič, A., Matović, B., Orlović, S., Duputie, A., Djurdjević, V., Galić, Z., Stojnić, S., 2013. Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agric. For. Meteorol. 176, 94–103. 10.1016/j.agrformet.2013.03.009 • Taleshi, H., Jalali, S.G., Alavi, S.J., Hosseini, S.M., Naimi, B., Zimmermann, N.E., 2019. Climate change impacts on the distribution and diversity of major tree species in the temperate forests of Northern Iran. Reg. Environ. Chang. 19. 10.1007/s10113-019-01578-5 • Thuiller, W., 2003. BIOMOD - Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Chang. Biol. 9. 10.1046/j.1365-2486.2003.00666.x • Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD - A platform for ensemble forecasting of species distributions. Ecography (Cop.). 32. 10.1111/j.1600-0587.2008.05742.x • Thuiller, W., Lavorel, S., Sykes, M.T., Araújo, M.B., 2006. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers. Distrib. 12. 10.1111/j.1366-9516.2006.00216.x • Trigo, R.M., DaCamara, C.C., 2000. Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol. 20, 1559–1581. • Vieilledent, G., Cornu, C., Cuní Sanchez, A., Leong Pock-Tsy, J.M., Danthu, P. 2013. Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: Towards new conservation priorities. Biol. Conserv. 166, 11-22. 10.1016/j.biocon.2013.06.007 • Vitale, M., Mancini, M., Matteucci, G., Francesconi, F., Valenti, R., Attorre, F., 2012. Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. IForest 5. 10.3832/ifor0634-005 • Vitasse, Y., François, C., Delpierre, N., Dufrêne, E., Kremer, A., Chuine, I., Delzon, S., 2011. Assessing the effects of climate change on the phenology of European temperate trees. Agric. For. Meteorol. 151. 10.1016/j.agrformet.2011.03.003 • Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., Mcdowell, N.G., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3. 10.1038/nclimate1693 • Woodward, F.I., Williams, B.G., 1987. Climate and plant distribution at global and local scales. Vegetatio 69. 10.1007/BF00038700 • Xie, Y., Wang, X., Silander, J.A., 2015. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proc. Natl. Acad. Sci. U. S. A. 112. 10.1073/pnas.1509991112 • Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Zhang, X., Wang, L., 2015. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PLoS One 10, 1-2. doi:10.1371/journal.pone.0120056

UCM subjects

Keywords

Collections