Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Existencia de ondas viajeras con frentes en un sistema parabólico semilineal

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1989

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid
Citations
Google Scholar

Citation

Abstract

The authors consider the system, defined for t>0, -∞<x<∞,(1)u t -u xx +v p =0,v t -v xx +u q =0,0<p,q<∞,and their solutions of the form (2)u(x,t)=φ(ct-x),v(x,t)=ψ(ct-x),φ(ξ),ψ(ξ)nonnegative and different from zero, nondecreasing in ξ, φ, ψ∈C 2 (-∞,+∞). If for a certain real ξ 0 φ(ξ)=ψ(ξ)=0 when ξ≤ξ 0 , these solutions (u,v)=(φ,ψ) will be called a finite travelling wave (FTV). In the case here considered, the FTV are unbounded. The main results are: Theorem 1. There exist FTV of (1) if and only if pq<1. In this case, for every real c there exists a FTV with speed c, and the corresponding profiles φ,ψ are unique up to space and time translations. Definition: f(ξ)≈g(ξ) as ξ→ξ 0 (finite or not) if lim ξ→ξ 0 f(ξ)/g(ξ)=1· Theorem 2. Let pq<1 and, for every real c, let (φ,ψ) be the FTV with speed c of Theorem 1. Then i) For every real c, φ(ξ)≈Aξ α , ψ(ξ)≈Bξ β as ξ→0 + . Here α=2(1+p)/(1-pq), β=2(1+q)/(1-pq), A 1-pq =[β(β-1) p α(α-1)] -1 , B=A q (β(β-1)) -1 · ii) If c<0, φ(ξ)≈cξ γ , ψ(ξ)≈Dξ δ when ξ≫0, where γ=(1+p)/(1-pq), δ=(1+q)/(1-pq), c 1-pq =[(1-c) 1+p δ p γ] -1 , D=C p [(-c)δ] -1 · iii) When c>0, φ (ξ)≈Mexpcξ, ψ (ξ)≈Nexpcξ, where the constants M,N have different dependencies on c, p,q according to p<1, q<1; p<1, q=1; p<1, q>1·

Research Projects

Organizational Units

Journal Issue

Description

Proceedings of the mathematical meeting in honor of A. Dou held on June, 17th, 1988 in Madrid, Spain

Keywords