Existencia de ondas viajeras con frentes en un sistema parabólico semilineal
Loading...
Official URL
Full text at PDC
Publication date
1989
Authors
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
The authors consider the system, defined for t>0, -∞<x<∞,(1)u t -u xx +v p =0,v t -v xx +u q =0,0<p,q<∞,and their solutions of the form (2)u(x,t)=φ(ct-x),v(x,t)=ψ(ct-x),φ(ξ),ψ(ξ)nonnegative and different from zero, nondecreasing in ξ, φ, ψ∈C 2 (-∞,+∞). If for a certain real ξ 0 φ(ξ)=ψ(ξ)=0 when ξ≤ξ 0 , these solutions (u,v)=(φ,ψ) will be called a finite travelling wave (FTV). In the case here considered, the FTV are unbounded. The main results are:
Theorem 1. There exist FTV of (1) if and only if pq<1. In this case, for every real c there exists a FTV with speed c, and the corresponding profiles φ,ψ are unique up to space and time translations. Definition: f(ξ)≈g(ξ) as ξ→ξ 0 (finite or not) if lim ξ→ξ 0 f(ξ)/g(ξ)=1·
Theorem 2. Let pq<1 and, for every real c, let (φ,ψ) be the FTV with speed c of Theorem 1. Then
i) For every real c, φ(ξ)≈Aξ α , ψ(ξ)≈Bξ β as ξ→0 + . Here α=2(1+p)/(1-pq), β=2(1+q)/(1-pq), A 1-pq =[β(β-1) p α(α-1)] -1 , B=A q (β(β-1)) -1 ·
ii) If c<0, φ(ξ)≈cξ γ , ψ(ξ)≈Dξ δ when ξ≫0, where γ=(1+p)/(1-pq), δ=(1+q)/(1-pq), c 1-pq =[(1-c) 1+p δ p γ] -1 , D=C p [(-c)δ] -1 ·
iii) When c>0, φ (ξ)≈Mexpcξ, ψ (ξ)≈Nexpcξ, where the constants M,N have different dependencies on c, p,q according to p<1, q<1; p<1, q=1; p<1, q>1·
Description
Proceedings of the mathematical meeting in honor of A. Dou held on June, 17th, 1988 in Madrid, Spain