Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Existencia de ondas viajeras con frentes en un sistema parabólico semilineal

dc.book.titleActas de la Reunión Matemática en Honor de A. Dou
dc.contributor.authorEsquinas, J.
dc.contributor.authorHerrero, Miguel A.
dc.contributor.editorDíaz Díaz, Jesús Ildefonso
dc.contributor.editorVegas Montaner, José Manuel
dc.date.accessioned2023-06-20T21:07:58Z
dc.date.available2023-06-20T21:07:58Z
dc.date.issued1989
dc.descriptionProceedings of the mathematical meeting in honor of A. Dou held on June, 17th, 1988 in Madrid, Spain
dc.description.abstractThe authors consider the system, defined for t>0, -∞<x<∞,(1)u t -u xx +v p =0,v t -v xx +u q =0,0<p,q<∞,and their solutions of the form (2)u(x,t)=φ(ct-x),v(x,t)=ψ(ct-x),φ(ξ),ψ(ξ)nonnegative and different from zero, nondecreasing in ξ, φ, ψ∈C 2 (-∞,+∞). If for a certain real ξ 0 φ(ξ)=ψ(ξ)=0 when ξ≤ξ 0 , these solutions (u,v)=(φ,ψ) will be called a finite travelling wave (FTV). In the case here considered, the FTV are unbounded. The main results are: Theorem 1. There exist FTV of (1) if and only if pq<1. In this case, for every real c there exists a FTV with speed c, and the corresponding profiles φ,ψ are unique up to space and time translations. Definition: f(ξ)≈g(ξ) as ξ→ξ 0 (finite or not) if lim ξ→ξ 0 f(ξ)/g(ξ)=1· Theorem 2. Let pq<1 and, for every real c, let (φ,ψ) be the FTV with speed c of Theorem 1. Then i) For every real c, φ(ξ)≈Aξ α , ψ(ξ)≈Bξ β as ξ→0 + . Here α=2(1+p)/(1-pq), β=2(1+q)/(1-pq), A 1-pq =[β(β-1) p α(α-1)] -1 , B=A q (β(β-1)) -1 · ii) If c<0, φ(ξ)≈cξ γ , ψ(ξ)≈Dξ δ when ξ≫0, where γ=(1+p)/(1-pq), δ=(1+q)/(1-pq), c 1-pq =[(1-c) 1+p δ p γ] -1 , D=C p [(-c)δ] -1 · iii) When c>0, φ (ξ)≈Mexpcξ, ψ (ξ)≈Nexpcξ, where the constants M,N have different dependencies on c, p,q according to p<1, q<1; p<1, q=1; p<1, q>1·
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22724
dc.identifier.isbn84-7491-278-4
dc.identifier.relatedurlhttp://cisne.sim.ucm.es/record=b1248877~S6*spi
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60768
dc.page.final127
dc.page.initial121
dc.page.total378
dc.publication.placeMadrid
dc.publisherUniversidad Complutense de Madrid
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.9
dc.subject.cdu517.956.4
dc.subject.keywordSemilinear system
dc.subject.keywordfinite travelling wave
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleExistencia de ondas viajeras con frentes en un sistema parabólico semilineal
dc.typebook part
dspace.entity.typePublication
relation.isEditorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isEditorOfPublicationd300b4af-2d4b-46b7-a838-eff9a1de203e
relation.isEditorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download