On some subsets of L 1 (μ,E)

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Springer Verlag
Google Scholar
Research Projects
Organizational Units
Journal Issue
The paper starts with the following remark: One of the most common methods used in the literature to introduce new properties in a Banach space E consists in establishing some nontrivial relationships between different classes of subsets of E . Moving on from this, the author considers the classes of bounded, weakly relatively compact, weakly conditionally compact, norm relatively compact, Dunford-Pettis, and (V* ) subsets of L 1 (μ,E) (in symbols: B,W,WC,K,DP,V* , respectively) and investigates their nature and the consequences of the possible coincidence of two of them in terms of properties of the space L 1 (μ,E) . He observes that the following necessary condition is true. Proposition II.1: Let H be any of the classes K,W,WC,DP and V* . If M H(L 1 (μ,E)) then: (a) M is bounded; (b) M is uniformly integrable; (c) for every measurable set A , M(A)={∫ A fdμ , f K} is in H(E) . Then he gives the following definition: A subset M of L 1 (μ,E) satisfying conditions (a) to (c) of Proposition II.1 is called a μH -set; a Banach space E is said to have property P(μ,H) if every μH -set belongs to H(L 1 (μ,E)) . Then he gives necessary and sufficient conditions for a Banach space E to have property P(μ,V*),P(μ,WC) and P(μ,DP)
K. T. Andrews: Dunford-Pettis sets in the space of Bochner integrable functions. Math. Ann., (1979), 35-41. F. Bombal: On l\sb 1 subspaces of Orlicz vector-valued function spaces. Math. Proc. Cambr. Phil. Soc., 101 (1987) 107-112. F. Bombal: On (V*) sets and Pelczynski's property (V*). Glasgow Math. J. 32 (1990), 109-120. F. Bombal: Sobre algunas propiedades de Espacio de Banach. To appear in Rev. Acad. Ci. Madrid. F. Bombal, P. Cembranos: Characterization of some classes of operators on spaces of vector valued continuous functions. Math. Proc. Cambr. Phil. Soc., 97 (1985), 137-146. F. Bombal, C. Fierro: Compacidad débil en espacios de Orlicz de funciones vectoriales. Rev. Acad. Ci. Madrid, 78 (1984), 157-163. J. Bourgain, J. Diestel: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55-58. J. Bourgain: An averaging result for l\sb 1-sequences and applications to weakly conditionally compact sets in L\sp{1}\sb{X}. Israel J. of Math., vol. 32 (1979), 289-298. J. Bourgain: On the Dunford-Pettis Property. Proc. of the Amer. Math. Soc., 81 (1981), 265-272. J. Diestel: Sequences and series in Banach spaces. Graduate texts in Math., no. 92. Springer, 1984. J. Diestel, J. J. Uhl, Jr.: Vector measures. Amer. Math. Soc. Mathematical Surveys, Vol. 15. Providence, R.I., 1977. C. Fierro: Compacidad débil en espacios de funciones y medidas vectoriales. Thesis. Madrid, 1980. A. Grothendieck: Sur les applications linéaires faiblement compacts d'espaces du type C(K). Canad. J. of math., 5 (1953), 129-173. N. Ghoussoub, P. Saab: Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property. Pacific J. of Math., 110 (1984), 65-70. G. Emmanuele: On the Banach spaces with the property (V*) of Pelczynski. Annali Mat. Pura e Applicata, 152 (1988), 171-181. A. Pelczynski: On Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci., 10 (1962), 641-648. G. Pisier: Une propriété de stabilité de la classe des espaces ne contenant pas $l^1$. C. R. Acad. Sci. Paris Ser. A 286 (1978), 747-749. E. Saab, P. Saab: On Pelczynski's property (V) and (V*). Pacific J. Math., 125 (1986), 205-210. M. Talagrand: La propriété de Dunford-Pettis dans C(K, E) et $L\sp{1}(E)$. Israel J. of Math., 44 (1983), 317-321. M. Talagrand: Weak Cauchy sequences in $L\sp{1}(E)$. Amer. J. of Math., (1984), 703-724.