On some subsets of L 1 (μ,E)
dc.contributor.author | Bombal Gordón, Fernando | |
dc.date.accessioned | 2023-06-20T17:11:17Z | |
dc.date.available | 2023-06-20T17:11:17Z | |
dc.date.issued | 1991 | |
dc.description.abstract | The paper starts with the following remark: One of the most common methods used in the literature to introduce new properties in a Banach space E consists in establishing some nontrivial relationships between different classes of subsets of E . Moving on from this, the author considers the classes of bounded, weakly relatively compact, weakly conditionally compact, norm relatively compact, Dunford-Pettis, and (V* ) subsets of L 1 (μ,E) (in symbols: B,W,WC,K,DP,V* , respectively) and investigates their nature and the consequences of the possible coincidence of two of them in terms of properties of the space L 1 (μ,E) . He observes that the following necessary condition is true. Proposition II.1: Let H be any of the classes K,W,WC,DP and V* . If M H(L 1 (μ,E)) then: (a) M is bounded; (b) M is uniformly integrable; (c) for every measurable set A , M(A)={∫ A fdμ , f K} is in H(E) . Then he gives the following definition: A subset M of L 1 (μ,E) satisfying conditions (a) to (c) of Proposition II.1 is called a μH -set; a Banach space E is said to have property P(μ,H) if every μH -set belongs to H(L 1 (μ,E)) . Then he gives necessary and sufficient conditions for a Banach space E to have property P(μ,V*),P(μ,WC) and P(μ,DP) | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/19930 | |
dc.identifier.issn | 0011-4642 | |
dc.identifier.officialurl | http://dml.cz/handle/10338.dmlcz/102448 | |
dc.identifier.relatedurl | http://dml.cz/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57912 | |
dc.issue.number | 1 | |
dc.journal.title | Czechoslovak Mathematical Journal | |
dc.language.iso | eng | |
dc.page.final | 179 | |
dc.page.initial | 170 | |
dc.publisher | Springer Verlag | |
dc.relation.projectID | PB88-0141. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514.7 | |
dc.subject.keyword | class of bounded sets | |
dc.subject.keyword | weakly relatively compact sets | |
dc.subject.keyword | weakly conditionally compact sets | |
dc.subject.keyword | weakly compact sets | |
dc.subject.keyword | Dunford-Pettis subsets | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | On some subsets of L 1 (μ,E) | |
dc.type | journal article | |
dc.volume.number | 41 | |
dcterms.references | K. T. Andrews: Dunford-Pettis sets in the space of Bochner integrable functions. Math. Ann., (1979), 35-41. F. Bombal: On l\sb 1 subspaces of Orlicz vector-valued function spaces. Math. Proc. Cambr. Phil. Soc., 101 (1987) 107-112. F. Bombal: On (V*) sets and Pelczynski's property (V*). Glasgow Math. J. 32 (1990), 109-120. F. Bombal: Sobre algunas propiedades de Espacio de Banach. To appear in Rev. Acad. Ci. Madrid. F. Bombal, P. Cembranos: Characterization of some classes of operators on spaces of vector valued continuous functions. Math. Proc. Cambr. Phil. Soc., 97 (1985), 137-146. F. Bombal, C. Fierro: Compacidad débil en espacios de Orlicz de funciones vectoriales. Rev. Acad. Ci. Madrid, 78 (1984), 157-163. J. Bourgain, J. Diestel: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55-58. J. Bourgain: An averaging result for l\sb 1-sequences and applications to weakly conditionally compact sets in L\sp{1}\sb{X}. Israel J. of Math., vol. 32 (1979), 289-298. J. Bourgain: On the Dunford-Pettis Property. Proc. of the Amer. Math. Soc., 81 (1981), 265-272. J. Diestel: Sequences and series in Banach spaces. Graduate texts in Math., no. 92. Springer, 1984. J. Diestel, J. J. Uhl, Jr.: Vector measures. Amer. Math. Soc. Mathematical Surveys, Vol. 15. Providence, R.I., 1977. C. Fierro: Compacidad débil en espacios de funciones y medidas vectoriales. Thesis. Madrid, 1980. A. Grothendieck: Sur les applications linéaires faiblement compacts d'espaces du type C(K). Canad. J. of math., 5 (1953), 129-173. N. Ghoussoub, P. Saab: Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property. Pacific J. of Math., 110 (1984), 65-70. G. Emmanuele: On the Banach spaces with the property (V*) of Pelczynski. Annali Mat. Pura e Applicata, 152 (1988), 171-181. A. Pelczynski: On Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci., 10 (1962), 641-648. G. Pisier: Une propriété de stabilité de la classe des espaces ne contenant pas $l^1$. C. R. Acad. Sci. Paris Ser. A 286 (1978), 747-749. E. Saab, P. Saab: On Pelczynski's property (V) and (V*). Pacific J. Math., 125 (1986), 205-210. M. Talagrand: La propriété de Dunford-Pettis dans C(K, E) et $L\sp{1}(E)$. Israel J. of Math., 44 (1983), 317-321. M. Talagrand: Weak Cauchy sequences in $L\sp{1}(E)$. Amer. J. of Math., (1984), 703-724. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1