Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On some subsets of L 1 (μ,E)

dc.contributor.authorBombal Gordón, Fernando
dc.date.accessioned2023-06-20T17:11:17Z
dc.date.available2023-06-20T17:11:17Z
dc.date.issued1991
dc.description.abstractThe paper starts with the following remark: One of the most common methods used in the literature to introduce new properties in a Banach space E consists in establishing some nontrivial relationships between different classes of subsets of E . Moving on from this, the author considers the classes of bounded, weakly relatively compact, weakly conditionally compact, norm relatively compact, Dunford-Pettis, and (V* ) subsets of L 1 (μ,E) (in symbols: B,W,WC,K,DP,V* , respectively) and investigates their nature and the consequences of the possible coincidence of two of them in terms of properties of the space L 1 (μ,E) . He observes that the following necessary condition is true. Proposition II.1: Let H be any of the classes K,W,WC,DP and V* . If M H(L 1 (μ,E)) then: (a) M is bounded; (b) M is uniformly integrable; (c) for every measurable set A , M(A)={∫ A fdμ , f K} is in H(E) . Then he gives the following definition: A subset M of L 1 (μ,E) satisfying conditions (a) to (c) of Proposition II.1 is called a μH -set; a Banach space E is said to have property P(μ,H) if every μH -set belongs to H(L 1 (μ,E)) . Then he gives necessary and sufficient conditions for a Banach space E to have property P(μ,V*),P(μ,WC) and P(μ,DP)
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19930
dc.identifier.issn0011-4642
dc.identifier.officialurlhttp://dml.cz/handle/10338.dmlcz/102448
dc.identifier.relatedurlhttp://dml.cz/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57912
dc.issue.number1
dc.journal.titleCzechoslovak Mathematical Journal
dc.language.isoeng
dc.page.final179
dc.page.initial170
dc.publisherSpringer Verlag
dc.relation.projectIDPB88-0141.
dc.rights.accessRightsopen access
dc.subject.cdu514.7
dc.subject.keywordclass of bounded sets
dc.subject.keywordweakly relatively compact sets
dc.subject.keywordweakly conditionally compact sets
dc.subject.keywordweakly compact sets
dc.subject.keywordDunford-Pettis subsets
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn some subsets of L 1 (μ,E)
dc.typejournal article
dc.volume.number41
dcterms.referencesK. T. Andrews: Dunford-Pettis sets in the space of Bochner integrable functions. Math. Ann., (1979), 35-41. F. Bombal: On l\sb 1 subspaces of Orlicz vector-valued function spaces. Math. Proc. Cambr. Phil. Soc., 101 (1987) 107-112. F. Bombal: On (V*) sets and Pelczynski's property (V*). Glasgow Math. J. 32 (1990), 109-120. F. Bombal: Sobre algunas propiedades de Espacio de Banach. To appear in Rev. Acad. Ci. Madrid. F. Bombal, P. Cembranos: Characterization of some classes of operators on spaces of vector valued continuous functions. Math. Proc. Cambr. Phil. Soc., 97 (1985), 137-146. F. Bombal, C. Fierro: Compacidad débil en espacios de Orlicz de funciones vectoriales. Rev. Acad. Ci. Madrid, 78 (1984), 157-163. J. Bourgain, J. Diestel: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55-58. J. Bourgain: An averaging result for l\sb 1-sequences and applications to weakly conditionally compact sets in L\sp{1}\sb{X}. Israel J. of Math., vol. 32 (1979), 289-298. J. Bourgain: On the Dunford-Pettis Property. Proc. of the Amer. Math. Soc., 81 (1981), 265-272. J. Diestel: Sequences and series in Banach spaces. Graduate texts in Math., no. 92. Springer, 1984. J. Diestel, J. J. Uhl, Jr.: Vector measures. Amer. Math. Soc. Mathematical Surveys, Vol. 15. Providence, R.I., 1977. C. Fierro: Compacidad débil en espacios de funciones y medidas vectoriales. Thesis. Madrid, 1980. A. Grothendieck: Sur les applications linéaires faiblement compacts d'espaces du type C(K). Canad. J. of math., 5 (1953), 129-173. N. Ghoussoub, P. Saab: Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property. Pacific J. of Math., 110 (1984), 65-70. G. Emmanuele: On the Banach spaces with the property (V*) of Pelczynski. Annali Mat. Pura e Applicata, 152 (1988), 171-181. A. Pelczynski: On Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci., 10 (1962), 641-648. G. Pisier: Une propriété de stabilité de la classe des espaces ne contenant pas $l^1$. C. R. Acad. Sci. Paris Ser. A 286 (1978), 747-749. E. Saab, P. Saab: On Pelczynski's property (V) and (V*). Pacific J. Math., 125 (1986), 205-210. M. Talagrand: La propriété de Dunford-Pettis dans C(K, E) et $L\sp{1}(E)$. Israel J. of Math., 44 (1983), 317-321. M. Talagrand: Weak Cauchy sequences in $L\sp{1}(E)$. Amer. J. of Math., (1984), 703-724.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bombal63.pdf
Size:
902.14 KB
Format:
Adobe Portable Document Format

Collections