Design of electrochemical immunosensors using electro-click chemistry. Application to the detection of IL-1β cytokine in saliva
Loading...
Official URL
Full text at PDC
Publication date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Guerrero S, Agüí L, Yáñez-Sedeño P, Pingarrón JM. Design of electrochemical immunosensors using electro-click chemistry. Application to the detection of IL-1β cytokine in saliva. Bioelectrochemistry. 2020 Feb 14;133:107484 - 107490.
Abstract
Electro-click methodology was employed to prepare an electrochemical immunosensor for the cytokine interleukin 1β (IL-1β). The strategy involved binding of ethynylated IgG to azide-MWCNTs modified electrodes by Cu(I) catalyzed-cycloaddition reaction where the catalyst was electrochemically synthesized. This electro-click protocol is significantly faster and greener than the methods for catalyst generation through chemical reduction. The oriented immobilization of the capture antibody onto IgG-MWCNTs conjugates allowed the preparation of a sandwich-type immunosensor using biotinylated anti-IL-1β as detector antibody labeled with alkaline phosphatase-streptavidin (AP-strept). Differential pulse voltammetric transduction through the 1-naphthylphosphate/1-naphthol system was carried out. The analytical characteristics achieved with the electrochemical immunosensor showed a calibration curve exhibiting two linear ranges between 10 and 200 pg mL−1 (r2 = 0.998), and from 200 to 1200 pg mL−1 (r2 = 0.998), and a LOD value of 5.2 pg mL−1, an improvement compared with those claimed for commercial ELISA kits. In addition, the assay time was at least one hour shorter. Excellent performance was observed in the determination of IL-1β in saliva with no need for sample treatment, and by simple interpolation using a calibration plot constructed with standard solutions of the target cytokine.