Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

When topological derivatives met regularized Gauss-Newton iterations in holographic 3D imaging

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Carpio Rodríguez, A. M., DImiduk, Th. G., Le Louër, F. & Rapún Banzo, M. L. «When Topological Derivatives Met Regularized Gauss-Newton Iterations in Holographic 3D Imaging». Journal of Computational Physics, vol. 388, julio de 2019, pp. 224-51. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2019.03.027.

Abstract

We propose an automatic algorithm for 3D inverse electromagnetic scattering based on the combination of topological derivatives and regularized Gauss-Newton iterations. The algorithm is adapted to decoding digital holograms. A hologram is a two-dimensional light interference pattern that encodes information about three-dimensional shapes and their optical properties. The formation of the hologram is modeled using Maxwell theory for light scattering by particles. We then seek shapes optimizing error functionals which measure the deviation from the recorded holograms. Their topological derivatives provide initial guesses of the objects. Next, we correct these predictions by regularized Gauss-Newton techniques devised to solve the inverse holography problem. In contrast to standard Gauss-Newton methods, in our implementation the number of objects can be automatically updated during the iterative procedure by new topological derivative computations. We show that the combined use of topological derivative based optimization and iteratively regularized Gauss-Newton methods produces fast and accurate descriptions of the geometry of objects formed by multiple components with nanoscale resolution, even for a small number of detectors and non convex components aligned in the incidence direction.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections