When topological derivatives met regularized Gauss-Newton iterations in holographic 3D imaging

dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.authorDimiduk, Thomas G.
dc.contributor.authorLe Louër, Frédérique
dc.contributor.authorRapún Banzo, María Luisa
dc.date.accessioned2023-06-17T13:23:35Z
dc.date.available2023-06-17T13:23:35Z
dc.date.issued2019
dc.description.abstractWe propose an automatic algorithm for 3D inverse electromagnetic scattering based on the combination of topological derivatives and regularized Gauss-Newton iterations. The algorithm is adapted to decoding digital holograms. A hologram is a two-dimensional light interference pattern that encodes information about three-dimensional shapes and their optical properties. The formation of the hologram is modeled using Maxwell theory for light scattering by particles. We then seek shapes optimizing error functionals which measure the deviation from the recorded holograms. Their topological derivatives provide initial guesses of the objects. Next, we correct these predictions by regularized Gauss-Newton techniques devised to solve the inverse holography problem. In contrast to standard Gauss-Newton methods, in our implementation the number of objects can be automatically updated during the iterative procedure by new topological derivative computations. We show that the combined use of topological derivative based optimization and iteratively regularized Gauss-Newton methods produces fast and accurate descriptions of the geometry of objects formed by multiple components with nanoscale resolution, even for a small number of detectors and non convex components aligned in the incidence direction.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/55541
dc.identifier.citationCarpio Rodríguez, A. M., DImiduk, Th. G., Le Louër, F. & Rapún Banzo, M. L. «When Topological Derivatives Met Regularized Gauss-Newton Iterations in Holographic 3D Imaging». Journal of Computational Physics, vol. 388, julio de 2019, pp. 224-51. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2019.03.027.
dc.identifier.doi10.1016/j.jcp.2019.03.027
dc.identifier.issn0021-9991
dc.identifier.officialurlhttps://doi.org/10.1016/j.jcp.2019.03.027
dc.identifier.relatedurlhttps://www.sciencedirect.com/journal/journal-of-computational-physics
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13346
dc.journal.titleJournal of Computational Physics
dc.language.isoeng
dc.page.final251
dc.page.initial224
dc.publisherElsevier
dc.relation.projectIDMTM2017-84446-C2-1-R
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu519.863
dc.subject.keywordThree-dimensional sensing
dc.subject.keywordInverse problems
dc.subject.keywordInverse electromagnetic scattering
dc.subject.keywordOptimization
dc.subject.keywordTopological derivatives
dc.subject.keywordIteratively regularized Gauss-Newton methods
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.ucmTopología
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1210 Topología
dc.titleWhen topological derivatives met regularized Gauss-Newton iterations in holographic 3D imagingen
dc.typejournal article
dc.volume.number388
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication4aa587c2-c91a-40a3-b6ae-d83fb2bcdc56
relation.isAuthorOfPublication.latestForDiscovery4aa587c2-c91a-40a3-b6ae-d83fb2bcdc56

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
50post.pdf
Size:
4.07 MB
Format:
Adobe Portable Document Format

Collections