Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Alternative derivation of the Pegg-Barnett phase operator

dc.contributor.authorLuis Aina, Alfredo
dc.contributor.authorSánchez Soto, Luis Lorenzo
dc.date.accessioned2023-06-20T20:12:29Z
dc.date.available2023-06-20T20:12:29Z
dc.date.issued1993-02
dc.description© 1993 The American Physical Society. We are much indebted to Professor E. Bernabeu for his continual advice and interest in the present work.
dc.description.abstractAn alternative derivation of the Pegg-Barnett phase operator is presented. This approach is based on the properties of the representation in quantum mechanics of a nonlinear nonbijective canonical transformation. It does not use as its starting point either a finite-dimensional space or the definition of phase states. The features of this formalism are analyzed in terms of this transformation.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34707
dc.identifier.doi10.1103/PhysRevA.47.1492
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.47.1492
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59836
dc.issue.number2
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final1496
dc.page.initial1492
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordQuantum
dc.subject.keywordStates
dc.subject.keywordAngle
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleAlternative derivation of the Pegg-Barnett phase operator
dc.typejournal article
dc.volume.number47
dcterms.references[1] S. M. Barnett and D. T. Pegg, J. Phys. A 19, 3849 (1986). [2] P. A. M. Dirac, Proc. R. Soc. London Ser. A ll4, 243 (1927). [3] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 441 (1968). [4] L. Susskind and J, Glogower, Physics 1, 49 (1964). [5] J. M. Levy-Leblond, Ann. Phys. (N.Y.) 101, 319 (1976). [6] D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988). [7] R. Dirl, P. Kasperkovitz, and M. Moshinsky, J. Phys. A 21, 1835 (1988). [8] S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989). [9] D. T. Pegg and S. M. Barnett, Phys. Rev. A 48, 2579 (1991). [10] V. Buzek, A. D. Wilson-Gordon, P. L. Knight, and W. K. Lai, Phys. Rev A 45, 8079 (1992). [11] J. C. Garrison and J. Wong, J. Math. Phys. 11, 2242 (1970). [12] A. Galindo, Lett. Math. Phys. 8, 495 (1984); 9, 263 (1985). [13] J. Bergou and B.G. Englert, Ann. Phys. (N.Y.) 209, 479 (1991). [14] A. Luis and L. L. Sánchez-Soto, J. Phys. A 24, 2083 (1991). [15] R. G. Newton, Ann. Phys. (N.Y.) 124, 327 (1980). [16] A. Vourdas, Phys. Rev. A 41, 1653 (1990). [17] A. Luis and L.L. Sánchez-Soto, Quantum Opt. (to be published).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2
relation.isAuthorOfPublication88b797ff-cbd7-4498-a9c7-4e39f4fa4776
relation.isAuthorOfPublication.latestForDiscoveryb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luis,A135libre.pdf
Size:
225.63 KB
Format:
Adobe Portable Document Format

Collections