Alternative derivation of the Pegg-Barnett phase operator
dc.contributor.author | Luis Aina, Alfredo | |
dc.contributor.author | Sánchez Soto, Luis Lorenzo | |
dc.date.accessioned | 2023-06-20T20:12:29Z | |
dc.date.available | 2023-06-20T20:12:29Z | |
dc.date.issued | 1993-02 | |
dc.description | © 1993 The American Physical Society. We are much indebted to Professor E. Bernabeu for his continual advice and interest in the present work. | |
dc.description.abstract | An alternative derivation of the Pegg-Barnett phase operator is presented. This approach is based on the properties of the representation in quantum mechanics of a nonlinear nonbijective canonical transformation. It does not use as its starting point either a finite-dimensional space or the definition of phase states. The features of this formalism are analyzed in terms of this transformation. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34707 | |
dc.identifier.doi | 10.1103/PhysRevA.47.1492 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.47.1492 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59836 | |
dc.issue.number | 2 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.page.final | 1496 | |
dc.page.initial | 1492 | |
dc.publisher | American Physical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Quantum | |
dc.subject.keyword | States | |
dc.subject.keyword | Angle | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Alternative derivation of the Pegg-Barnett phase operator | |
dc.type | journal article | |
dc.volume.number | 47 | |
dcterms.references | [1] S. M. Barnett and D. T. Pegg, J. Phys. A 19, 3849 (1986). [2] P. A. M. Dirac, Proc. R. Soc. London Ser. A ll4, 243 (1927). [3] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 441 (1968). [4] L. Susskind and J, Glogower, Physics 1, 49 (1964). [5] J. M. Levy-Leblond, Ann. Phys. (N.Y.) 101, 319 (1976). [6] D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988). [7] R. Dirl, P. Kasperkovitz, and M. Moshinsky, J. Phys. A 21, 1835 (1988). [8] S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989). [9] D. T. Pegg and S. M. Barnett, Phys. Rev. A 48, 2579 (1991). [10] V. Buzek, A. D. Wilson-Gordon, P. L. Knight, and W. K. Lai, Phys. Rev A 45, 8079 (1992). [11] J. C. Garrison and J. Wong, J. Math. Phys. 11, 2242 (1970). [12] A. Galindo, Lett. Math. Phys. 8, 495 (1984); 9, 263 (1985). [13] J. Bergou and B.G. Englert, Ann. Phys. (N.Y.) 209, 479 (1991). [14] A. Luis and L. L. Sánchez-Soto, J. Phys. A 24, 2083 (1991). [15] R. G. Newton, Ann. Phys. (N.Y.) 124, 327 (1980). [16] A. Vourdas, Phys. Rev. A 41, 1653 (1990). [17] A. Luis and L.L. Sánchez-Soto, Quantum Opt. (to be published). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 | |
relation.isAuthorOfPublication | 88b797ff-cbd7-4498-a9c7-4e39f4fa4776 | |
relation.isAuthorOfPublication.latestForDiscovery | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 |
Download
Original bundle
1 - 1 of 1