Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

González Nieto, D., Fernández García, L., Pérez Rigueiro, J. et al. «Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality». Polymers, vol. 10, n.o 2, febrero de 2018, p. 184. DOI.org (Crossref), https://doi.org/10.3390/polym10020184.

Abstract

The use of advanced biomaterials as a structural and functional support for stem cells-based therapeutic implants has boosted the development of tissue engineering applications in multiple clinical fields. In relation to neurological disorders, we are still far from the clinical reality of restoring normal brain function in neurodegenerative diseases and cerebrovascular disorders. Hydrogel polymers show unique mechanical stiffness properties in the range of living soft tissues such as nervous tissue. Furthermore, the use of these polymers drastically enhances the engraftment of stem cells as well as their capacity to produce and deliver neuroprotective and neuroregenerative factors in the host tissue. Along this article, we review past and current trends in experimental and translational research to understand the opportunities, benefits, and types of tentative hydrogel-based applications for the treatment of cerebral disorders. Although the use of hydrogels for brain disorders has been restricted to the experimental area, the current level of knowledge anticipates an intense development of this field to reach clinics in forthcoming years.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections