Asymptotic properties of a semilinear heat equation with strong absorption and small diffusion
Loading...
Download
Full text at PDC
Publication date
1990
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
In this paper the authors study the asymptotic behaviour of solutions uε(x,t) of the Cauchy problems as ε goes to zero: ut−εΔu+up=0, x∈RN, t>0; u(x,0)=u0(x), x∈RN, 0<p<1. Compared with the explicit solution u¯(x,t) and the extinction time T0E(x) of the corresponding spatially independent initial value problem: ut+up=0, x∈RN, t>0; u(x,0)=u0(x), x∈RN, it is proved under certain assumptions that uε(x,t)→u¯(x,t) as ε↓0 uniformly on compact subsets of RN ×[0,∞) and, moreover, a precise estimate is given. Local and global estimates for extinction time are also given. The proofs are somewhat technical