Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Asymptotic properties of a semilinear heat equation with strong absorption and small diffusion

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:09:55Z
dc.date.available2023-06-20T17:09:55Z
dc.date.issued1990
dc.description.abstractIn this paper the authors study the asymptotic behaviour of solutions uε(x,t) of the Cauchy problems as ε goes to zero: ut−εΔu+up=0, x∈RN, t>0; u(x,0)=u0(x), x∈RN, 0<p<1. Compared with the explicit solution u¯(x,t) and the extinction time T0E(x) of the corresponding spatially independent initial value problem: ut+up=0, x∈RN, t>0; u(x,0)=u0(x), x∈RN, it is proved under certain assumptions that uε(x,t)→u¯(x,t) as ε↓0 uniformly on compact subsets of RN ×[0,∞) and, moreover, a precise estimate is given. Local and global estimates for extinction time are also given. The proofs are somewhat technical
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipEEC Contract
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18093
dc.identifier.doi10.1007/BF01444558
dc.identifier.issn0025-5831
dc.identifier.officialurlhttp://www.springerlink.com/content/r7plvk7500318562/
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57874
dc.issue.number4
dc.journal.titleMathematische Annalen
dc.language.isoeng
dc.page.final695
dc.page.initial675
dc.publisherSpringer
dc.relation.projectIDPB86-0112-C0202
dc.relation.projectIDSC1-0019-C
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.cdu536.2
dc.subject.keywordBlow-up time
dc.subject.keywordparabolic equations
dc.subject.keywordvariational inequalities
dc.subject.keywordthermal waves
dc.subject.keywordsupport
dc.subject.keywordsemilinear heat equation
dc.subject.keywordstrong absorption
dc.subject.keywordsmall diffusion
dc.subject.keywordCauchy problems
dc.subject.keywordconvergence
dc.subject.keywordextinction times
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleAsymptotic properties of a semilinear heat equation with strong absorption and small diffusion
dc.typejournal article
dc.volume.number288
dcterms.referencesBender, C.M., Orszag, S.: Advanced mathematical methods for scientists and engineers. NewYork: McGraw-Hill 1985 Brezis, H., Friedman, A.: Estimates on the support of solutions of parabolic variational inequalities. Ill. J. Math. 20, 82-98 (1976) Evans, L.C., Knerr, B.F.: Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities. Ill. J. Math. 23, 153-166 (1979) Friedman, A., Herrero, M.A.: Extinction properties of semilinear heat equations with strong absorption. J. Math. Anal. Appl. 124, 530-546 (1987) Friedman, A., Lacey, A.A.: The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal. 18, 711-721 (1987) Friedman, A., Oswald, L.: The blow-up time for higher order semilinear parabolic equations with small leading coefficients. J. Differ. Equations 75, 239-263 (1988) Friedman, A., Phillips, D.: The free boundary of a semilinear elliptic equation. Trans. Am. Math. Soc. 282, 153-182 (1984) Grundy, R.E., Peletier, L.A.: Short time behaviour of a singular solution to the heat equation with absorption. Proc. R. Soc. Edinb. Sect. A 107, 271-288 (1987) Herrero, M.A., Vázquez, J.L.: Thermal waves in absorbing media, J. Differ. Equations 74, 218-233 (1988) Herrero, M.A., Velázquez, J.J.L.: On the dynamics of a semilinear heat equation with strong absorption. Comm. Partial Differ. Equations 14, 1653-1715 (1989) Kalashnikov, A.S.: The propagation of disturbances in problems of nonlinear heat conduction with absorption, USSR Comput. Math. and Math. Phys. (Translation of Vychisl. Mat i Mat Fiz) 14, 70-85 (1974) Kato, T.: Schrödinger operators with singular potentials. Isr. J. Maths. 13, 135-148 (1972) Lacey, A.A.: The form of blow-up for nonlinear parabolic equations, Proc. R. Soc. Edinb. Ser. A, 98, 183-202 (1984) Rosenau, Ph., Kamin, S.: Thermal waves in an absorbing and convecting medium. Physica 8D, 273-283 (1983)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero52.pdf
Size:
873.02 KB
Format:
Adobe Portable Document Format

Collections