Asymptotic properties of a semilinear heat equation with strong absorption and small diffusion
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T17:09:55Z | |
dc.date.available | 2023-06-20T17:09:55Z | |
dc.date.issued | 1990 | |
dc.description.abstract | In this paper the authors study the asymptotic behaviour of solutions uε(x,t) of the Cauchy problems as ε goes to zero: ut−εΔu+up=0, x∈RN, t>0; u(x,0)=u0(x), x∈RN, 0<p<1. Compared with the explicit solution u¯(x,t) and the extinction time T0E(x) of the corresponding spatially independent initial value problem: ut+up=0, x∈RN, t>0; u(x,0)=u0(x), x∈RN, it is proved under certain assumptions that uε(x,t)→u¯(x,t) as ε↓0 uniformly on compact subsets of RN ×[0,∞) and, moreover, a precise estimate is given. Local and global estimates for extinction time are also given. The proofs are somewhat technical | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.sponsorship | EEC Contract | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/18093 | |
dc.identifier.doi | 10.1007/BF01444558 | |
dc.identifier.issn | 0025-5831 | |
dc.identifier.officialurl | http://www.springerlink.com/content/r7plvk7500318562/ | |
dc.identifier.relatedurl | http://www.springerlink.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57874 | |
dc.issue.number | 4 | |
dc.journal.title | Mathematische Annalen | |
dc.language.iso | eng | |
dc.page.final | 695 | |
dc.page.initial | 675 | |
dc.publisher | Springer | |
dc.relation.projectID | PB86-0112-C0202 | |
dc.relation.projectID | SC1-0019-C | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 536.2 | |
dc.subject.keyword | Blow-up time | |
dc.subject.keyword | parabolic equations | |
dc.subject.keyword | variational inequalities | |
dc.subject.keyword | thermal waves | |
dc.subject.keyword | support | |
dc.subject.keyword | semilinear heat equation | |
dc.subject.keyword | strong absorption | |
dc.subject.keyword | small diffusion | |
dc.subject.keyword | Cauchy problems | |
dc.subject.keyword | convergence | |
dc.subject.keyword | extinction times | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Asymptotic properties of a semilinear heat equation with strong absorption and small diffusion | |
dc.type | journal article | |
dc.volume.number | 288 | |
dcterms.references | Bender, C.M., Orszag, S.: Advanced mathematical methods for scientists and engineers. NewYork: McGraw-Hill 1985 Brezis, H., Friedman, A.: Estimates on the support of solutions of parabolic variational inequalities. Ill. J. Math. 20, 82-98 (1976) Evans, L.C., Knerr, B.F.: Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities. Ill. J. Math. 23, 153-166 (1979) Friedman, A., Herrero, M.A.: Extinction properties of semilinear heat equations with strong absorption. J. Math. Anal. Appl. 124, 530-546 (1987) Friedman, A., Lacey, A.A.: The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal. 18, 711-721 (1987) Friedman, A., Oswald, L.: The blow-up time for higher order semilinear parabolic equations with small leading coefficients. J. Differ. Equations 75, 239-263 (1988) Friedman, A., Phillips, D.: The free boundary of a semilinear elliptic equation. Trans. Am. Math. Soc. 282, 153-182 (1984) Grundy, R.E., Peletier, L.A.: Short time behaviour of a singular solution to the heat equation with absorption. Proc. R. Soc. Edinb. Sect. A 107, 271-288 (1987) Herrero, M.A., Vázquez, J.L.: Thermal waves in absorbing media, J. Differ. Equations 74, 218-233 (1988) Herrero, M.A., Velázquez, J.J.L.: On the dynamics of a semilinear heat equation with strong absorption. Comm. Partial Differ. Equations 14, 1653-1715 (1989) Kalashnikov, A.S.: The propagation of disturbances in problems of nonlinear heat conduction with absorption, USSR Comput. Math. and Math. Phys. (Translation of Vychisl. Mat i Mat Fiz) 14, 70-85 (1974) Kato, T.: Schrödinger operators with singular potentials. Isr. J. Maths. 13, 135-148 (1972) Lacey, A.A.: The form of blow-up for nonlinear parabolic equations, Proc. R. Soc. Edinb. Ser. A, 98, 183-202 (1984) Rosenau, Ph., Kamin, S.: Thermal waves in an absorbing and convecting medium. Physica 8D, 273-283 (1983) | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1