Unicité des solutions renormalisés de problems elliptiques-paraboliques
dc.contributor.author | Carrillo Menéndez, José | |
dc.contributor.author | Wittbold, Petra | |
dc.date.accessioned | 2023-06-20T16:53:28Z | |
dc.date.available | 2023-06-20T16:53:28Z | |
dc.date.issued | 1999 | |
dc.description | Contiene una versión abreviada en inglés del artículo original publicado en el J. Differential Equations 156 (1999), no. 1, 93–121 | |
dc.description.abstract | We prove uniqueness and the L-1-comparison principle Sor renormalized solutions of the elliptic-parabolic problem associated with the equation b(upsilon)(t) = div a(upsilon, D upsilon) + f. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15580 | |
dc.identifier.doi | 10.1016/S0764-4442(99)80006-8 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0764444299800068 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57345 | |
dc.issue.number | 1 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.language.iso | eng | |
dc.page.final | 28 | |
dc.page.initial | 23 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Equations of mixed type | |
dc.subject.keyword | Degenerate elliptic equations | |
dc.subject.keyword | Degenerate parabolic equations | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Unicité des solutions renormalisés de problems elliptiques-paraboliques | |
dc.type | journal article | |
dc.volume.number | 328 | |
dcterms.references | Ah H.W., Luckhaus S.. Quasi-linear elliptic-parabolic differential equations, Math. Z. 183 (1983) 31 I-341. Blanchard D., Murat F., Renormalised solutions of nonlinear parabolic problems with L’ data: existence and uniqueness, Proc. Royal Sot. Edinburgh 127A (1997) 1137-l 152. Boccardo L.. Giachetti D., Diaz J.I., Murat F., Existence of a solution for a weaker form of a nonlinear elliptic equation, in: Recent advances in nonlinear elliptic and parabolic problems, Pitman Res. Notes Math. Ser. 208, Longman SC. Tech., Harlow 1989. 229-246. B&Ian Ph.. Wittbold P., On mild and weak solutions of elliptic-parabolic problems, Adv. Differ. Eq. I (1996)~ 1053-1073. Carrillo J.. Unicite des solutions du type Kruskov pour des probltmes elliptiques avec des termes de transport non lineaims, C. R. Acad. Sci. Paris 303 (1986) 189-192. Carrillo J., Entropy solutions for nonlinear degenerate problems, J. Differ. Eq. (a paraitre). Carrillo J., Wittbold I’., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, (en preparation). Di Perna R.J., Lions P.-L., On the Cauchy problem for Boltzmann equations: global existence and weak smbility, Ann, Math. 130 (1989) 321-366. Kruzhkov S.N., First-order quasilinear equations in several independent variables, Math. USSR Sbornik IO (1970) 217-243. Otto F., L’ -contraction and uniqueness for quasilinear elliptic-parabolic problems, J. Differ. Eq. 131 (1996) 827-848. Wittbold P., Renormalized solutions of quasilinear elliptic-parabolic problems, (en prep,aration) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 48ac980d-beb1-40b0-acec-caec3a109b1c | |
relation.isAuthorOfPublication.latestForDiscovery | 48ac980d-beb1-40b0-acec-caec3a109b1c |
Download
Original bundle
1 - 1 of 1