Noncommutative Einstein-Maxwell pp-waves

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
The field equations coupling a Seiberg-Witten electromagnetic field to noncommutative gravity, as described by a formal power series in the noncommutativity parameters theta(alpha beta), is investigated. A large family of solutions, up to order one in theta(alpha beta), describing Einstein-Maxwell null pp-waves is obtained. The order-one contributions can be viewed as providing noncommutative corrections to pp-waves. In our solutions, noncommutativity enters the spacetime metric through a conformal factor and is responsible for dilating/contracting the separation between points in the same null surface. The noncommutative corrections to the electromagnetic waves, while preserving the wave null character, include constant polarization, higher harmonic generation, and inhomogeneous susceptibility. As compared to pure noncommutative gravity, the novelty is that nonzero corrections to the metric already occur at order one in theta(alpha beta).
© 2006 The American Physical Society. Partial support by the BMFB, Germany, under Project No. 05HT4PSA/6 and from CICYT and UCM-CAM, Spain, through Grants No. FIS2005-02309 and No. 910770 is acknowledged.
Unesco subjects
[1] S. Doplicher, K. Fredenhagen, and J. E. Roberts, Commun. Math. Phys. 172, 187 (1995). [2] R. J. Szabo, hep-th/0606233. [3] J.W. Moffat, Phys. Lett. B 491, 345 (2000); A. H. Chamseddine, Commun. Math. Phys. 218, 283 (2001); H. García-Compeán, O. Obregón, C. Ramírez, and M. Sabido, Phys. Rev. D 68, 044015 (2003); H. Nishino and S. Rajpoot, Phys. Lett. B 532, 334 (2002); D.V. Vassilevich, Nucl. Phys. B715, 695 (2005); A. Kobakhidze, hep-th/0603132; C. Deliduman, hep-th/ 0607096; E. Harikumar and V. O. Rivelles, hep-th/ 0607115; A. H. Chamseddine, Int. J. Geom. Methods Mod. Phys. 3, 149 ( 2006); Phys. Lett. B 504, 33 (2001). [4] P. Aschieri, C. Blohmann, M. Dimitrijevic´, F. Meyer, P. Schupp, and J. Wess, Classical Quantum Gravity 22, 3511 (2005); P. Aschieri, M. Dimitrijevic´, F. Meyer, and J. Wess, Classical Quantum Gravity 23, 1883 (2006). [5] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999) 032. [6] L. Alvarez-Gaume´, F. Meyer, and M. A. Vázquez Mozo, Nucl. Phys. B753, 92 (2006). [7] P. Nicolini, A. Smailagic, and E. Spalucci, Phys. Lett. B 632, 547 (2006); T. G. Rizzo, J. High Energy Phys. 09 (2006) 021. [8] P. Mukherjee and A. Saha, Phys. Rev. D 74, 027702 (2006); X. Calmet and A. Kobakhidze, Phys. Rev. D 74, 047702 (2006). [9] Z. Guralnik, R. Jackiw, S.Y. Pi, and A. P. Polychronakos, Phys. Lett. B 517, 450 (2001). [10] D. Colladay and V. A. Kostelecky´, Phys. Rev. D 58, 116002 (1998); J. M. Gracia-Bondı´a, F. Lizzi, F. Ruiz Ruiz, and P. Vitale, Phys. Rev. D 74, 025014 (2006); 74, 029901(E) (2006 [11] V. Gayral, J. M. Gracia-Bondı´a, and F. Ruiz Ruiz, Nucl. Phys. B727, 513 (2005). [12] H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, England, 2003). [13] J. Ehlers and W. Kundt, in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962), p. 49. [14] R. Debever and M. Cahen, C.R. Acad. Sci. (Paris) 251, 1160 (1960). See also Ref. [12], p. 555. [15] Y. Abe, R. Banerjee, and I. Tsutsui, Phys. Lett. B 573, 248 (2003); N. Chatillon and A. Pinzul, hep ph/0607243. [16] R.-G. Cai, Phys. Lett. B 517, 457 (2001). [17] R. Banerjee and H. S. Yang, Nucl. Phys. B708, 434 (2005). [18] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 436, 257 (1998); L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).