Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The approximation property in spaces of differentiable functions. (Spanish: La propiedad de aproximación en espacios de funciones diferenciables).

dc.contributor.authorBombal Gordón, Fernando
dc.contributor.authorLlavona, José G.
dc.date.accessioned2023-06-21T02:03:41Z
dc.date.available2023-06-21T02:03:41Z
dc.date.issued1976
dc.description.abstractLet E and X be real Banach and locally convex spaces, respectively. Let Ccn(E,X) denote the space of n times continuously Hadamard differentiable functions f:E→X, endowed with the locally convex topology generated by the seminorms of the form f∈Ccn(E,X)→sup{α[Dpf(x)(y)]:x,y∈K}, where p∈N, p≤n, K⊂E is compact, and α is a continuous seminorm on X. The authors show that Ccn(E,X) is complete if X is complete, and investigate the relationship between approximation in Ccn(E,X) and the approximation property of E. For example, if X is complete, then Ccn(E,X) is topologically isomorphic to the ε-product of Ccn(E,R) and X. Using this result, the authors show that the following properties are equivalent: (a) E has the approximation property, (b) Ccn(E,R) has the approximation property for all (equivalently, for some) n≥1, and (c) for all X, Ccn(E,R)⊗X is dense in Ccn(E,X) for all (equivalently, for some) n≥1. Similar questions have been considered for the space Cn(E,X) of n times continuously Fréchet differentiable functions, endowed with the same locally convex topology. For example, the equivalence of (a) and (b) was proved by the first author (""Differentiable functions with the approximation property'', to appear) and the reviewer [Infinite dimensional holomorphy and applications (Proc. Internat. Sympos., Campinas, 1975), pp. 1–17, North-Holland, Amsterdam, 1977; see also Séminaire Pierre Lelong (Analyse), Année 1974/75, pp. 213–222, Lecture Notes in Math., Vol. 524, Springer, Berlin, 1976. It is apparently unknown whether Cn(E,R) is complete with this topology. Results relating the approximation property of E to approximation of Fréchet differentiable functions defined on open subsets of E and to generalized differentiable versions of the Stone-Weierstrass theorem have been obtained by J. B. Prolla and C. S. Guerreiro [Ark. Mat. 14 (1976), no. 2, 251–258].
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17884
dc.identifier.issn0034-0596
dc.identifier.officialurlhttp://www.rac.es/4/4_7_1.php?pid=Revistas:REV_20091030_00163&pageNum=0
dc.identifier.relatedurlhttp://www.rac.es/4/4_2_1.php
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64743
dc.issue.number4
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid
dc.language.isospa
dc.page.final741
dc.page.initial727
dc.publisherReal Academia de Ciencias Exactas, Físicas y Naturales
dc.rights.accessRightsopen access
dc.subject.cdu517.982.22
dc.subject.keywordBanach spaces
dc.subject.keywordsmoothness properties.
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmGeometria algebraica
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe approximation property in spaces of differentiable functions. (Spanish: La propiedad de aproximación en espacios de funciones diferenciables).
dc.typejournal article
dc.volume.number70
dcterms.referencesAron, R. M. y Schottenloher, M. 1974. Compact holomorphic mappings on Banach spaces and the approximation property. Bull, of the Amer. Math. Soc., vol. 80, num. 6. Aron, R. Compact polynomials and compact differentiable mappings between Banach spaces. (Por aparecer.) Bierstedt, K. D. 1973. Gewichtete Räume stetiger vektorwertiger funktionen und das injektive tensorprodukt. I. J. reine angew Math., 259, 186-210. Keller, H H. 1974. Differential calculus in locally convex spaces. Lect. Notes in Math., num. 417. Springer, Berlin. Gonzalez Llavona, J. L. Aproximación de funciones diferenciadles.Tesis doctoral. (Por aparecer.) Rodríguez Marín, L. Diferenciación en espacio vectoriales topológicos. Tesis doctoral. (Por aparecer.) Schaefer, H. H. 1967. Topological vector spaces. Macmillan, Nueva York. Schwartz, L. 1957. Théorie des distributions a valeurs vectorielles. I. Ann. Inst. Fourier, 7, 1-139. Schwartz, L. 1970. Analyse. Topologie générale et analyse fonctionnelle. Hermann, Paris. Treves, F. 1967. Topological vector spaces, distributions and kernels. Academic Press, Nueva York. Yamamuro, S. 1974. Differential calculus in Topological Linear spaces. Lect. Notes in Math., num. 374. Springer, Berlin.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bombal35.pdf
Size:
494.85 KB
Format:
Adobe Portable Document Format

Collections