Superconducting/magnetic three-state nanodevice for memory and reading applications
Loading...
Official URL
Full text at PDC
Publication date
2015
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature publishing group
Citation
Abstract
We present a simple nanodevice that can operate in two modes: i) non-volatile three-state memory and ii) reading device. The nanodevice can retain three well defined states −1, 0 and +1 and can operate in a second mode as a sensor for external magnetic fields. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film gown on Si substrates. The device runs based on the combination of superconducting vortex ratchet effect (superconducting film) with the out of plane magnetization (nanomagnets). The input signals are ac currents and the output signal are dc voltages. The memory mode is realized without applying a magnetic field and the nanomagnet stray magnetic fields govern the effect. In the sensor mode an external magnetic field is applied. The main characteristic of this mode is that the output signal is null for a precise value of the external magnetic field that only depends on the fabrication characteristics of the nanodevice.
Description
©Nature publishing group.
We thank Spanish MINECO grant FIS2013-45469 and CM grant S2013/MIT-2850 and EU COST Action MP-1201. D.G. acknowledges RYC-2012-09864.