Quantum evolution according to real clocks

dc.contributor.authorEgusquiza, Iñigo L.
dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorRaya, José M.
dc.date.accessioned2023-06-20T19:19:46Z
dc.date.available2023-06-20T19:19:46Z
dc.date.issued1999-05
dc.description© 1999 The American Physical Society. We thank C. Barceló, C. Cabrillo, P.F. González-Díaz, G.A. Mena Marugán, and M.A. alle Basagoiti for discussions. J.M.R. is also grateful to J.M. Quintana. We had support from the University of the Basque Country (Project No. UPV 063.310-EB225/95) from Junta de Andalucía, and from DGICYT (Spain) under Project Nos. PB94-0107 and PB93- 0139.
dc.description.abstractWe characterize good clocks, which are naturally subject to fluctuations, in statistical terms. We also obtain the master equation that governs the evolution of quantum systems according to these clacks and find its general solution. This master equation is diffusive and produces loss of coherence, Moreover, real clocks can he described in terms of effective interactions that are nonlocal in time. Alternatively, they can be modeled by an effective thermal bath coupled to the system. [S1050-2947(99)04905-7].
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversity of the Basque Country
dc.description.sponsorshipJunta de Andalucía
dc.description.sponsorshipDGICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29934
dc.identifier.doi10.1103/PhysRevA.59.3236
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.59.3236
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.relatedurlhttp://arxiv.org/pdf/quant-ph/9811009v1.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59530
dc.issue.number5
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final3240
dc.page.initial3236
dc.publisherAmerican Physical Society
dc.relation.projectIDUPV 063.310-EB225/95
dc.relation.projectIDPB94-0107
dc.relation.projectIDPB93- 0139.
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordTime
dc.subject.keywordGravity
dc.subject.keywordMechanics
dc.subject.keywordArrival
dc.subject.keywordSpacetime
dc.subject.keywordDynamics
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuantum evolution according to real clocks
dc.typejournal article
dc.volume.number59
dcterms.references[1] W. Pauli, Die Allgemeinen Prinzipien der Wallenmechanik. Handbuch der Physik, edited by S. Flügge (Springer, Berlin, 1958), Vol. V/1, p. 60; General Principles of Quantum Mechanics (Springer-Verlag, Berlin, 1980), p. 63 (English version). [2] J. G. Muga, R. Sala, and J. P. Palao, Superlattices Microstruct. 23, 833 (1998). [3] J. G. Muga, C. R. Leavens, and J. P. Palao, Phys. Rev. A 58, 4336 (1998); J. Oppenheim, B. Reznik, and W. G. Unruh, Time-of-Arrival States, Report No. quant-ph/9807043. [4] E. Wigner, Rev. Mod. Phys. 29, 255 (1957); H. Salecker and E. Wigner, Phys. Rev. 109, 571 (1958). [5] J. B. Hartle, Phys. Rev. D 38, 2985 (1988). [6] W. G. Unruh and R. M. Wald, Phys. Rev. D 40, 2598 (1989). [7] A. Peres, Am. J. Phys. 48, 552 (1980). [8] D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983). [9] Y. Aharanov et al., Phys. Rev. A 57, 4130 81998). [10] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995). [11] S. W. Hawking, Commun. Math. Phys. 87, 395 (1982); J. Ellis et al., Nucl. Phys. B 241, 381 (1984); L. J. Garay, Phys. Rev. Lett. 80, 2508 (1998); Phys. Rev. D 58, 124 015 (1998); G. Amelino-Camelia et al., Nature (London) 393, 763 (1998). [12] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981); C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer-Verlag, Berlin, 1985). [13] K. Huang, Statistical Mechanics (Wiley, New York, 1987). [14] R. P. Feynman and F. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963); R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 19659. [15] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951). [16] C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991); L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [17] D. Giulini et al., Decoherence and the Appearance of the Classical World in Quantum Theory (Springer-Verlag, Berlin, 1996). [18] W. H. Zurek, Phys. Rev. D 24, 1516 (1981); 26, 1862 (1982); in The Physical Origins of Time Asymmetry, edited by J. J. Halliwell, J. Pérez-Mercader, and W. H. Zurek (Cambridge University Press, Cambridge, 1994). [19] F. Cooper et al., Phys. Rev. D 55, 6471 (1997).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay34.pdf
Size:
120.64 KB
Format:
Adobe Portable Document Format

Collections