Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An Efficient Detection Approach for Unmanned Aerial Vehicle (UAV) Small Targets Based on Group Convolution

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MPDI
Citations
Google Scholar

Citation

Abstract

To solve the problem that small drones in the sky are easily confused with background objects and difficult to detect, according to the characteristics of irregular movement, small size, and changeable shape of drones, using a regional target recognition algorithm, the structure characteristics of Group Convolution (GC) in Resnext50 are absorbed. The optimized GC-faster-RCNN is obtained by improving the Fast-RCNN algorithm and the following methods are performed. First, a clustering method is used to analyze the dataset, and appropriate prior bounding box types are obtained. Second, the Resnext50 is used to replace the original feature extraction network, and the improved channel attention mechanism is integrated into its network output to enhance its feature map information. Then, we calculate its effective receptive field according to the Feature Pyramid Network (FPN) structure and redesign the prior bounding box of the corresponding size to construct a multi-scale detection network for small targets. Experiments show that the algorithm has a recognition accuracy of up to 94.8% under 1080 P image quality, and a recognition speed of 8FPS, which can effectively detect the positions of 1–5 small UAVs in a picture. This method provides an effective positioning detection for low-altitude UAVs.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Keywords

Collections