Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An Efficient Detection Approach for Unmanned Aerial Vehicle (UAV) Small Targets Based on Group Convolution

dc.contributor.authorCheng, Jianghao
dc.contributor.authorLiu, Yanyan
dc.contributor.authorLi, Guoning
dc.contributor.authorLi, Jin
dc.contributor.authorPeng, Jiantao
dc.contributor.authorHong, Jintao
dc.date.accessioned2023-06-22T11:05:07Z
dc.date.available2023-06-22T11:05:07Z
dc.date.issued2022-05-26
dc.description.abstractTo solve the problem that small drones in the sky are easily confused with background objects and difficult to detect, according to the characteristics of irregular movement, small size, and changeable shape of drones, using a regional target recognition algorithm, the structure characteristics of Group Convolution (GC) in Resnext50 are absorbed. The optimized GC-faster-RCNN is obtained by improving the Fast-RCNN algorithm and the following methods are performed. First, a clustering method is used to analyze the dataset, and appropriate prior bounding box types are obtained. Second, the Resnext50 is used to replace the original feature extraction network, and the improved channel attention mechanism is integrated into its network output to enhance its feature map information. Then, we calculate its effective receptive field according to the Feature Pyramid Network (FPN) structure and redesign the prior bounding box of the corresponding size to construct a multi-scale detection network for small targets. Experiments show that the algorithm has a recognition accuracy of up to 94.8% under 1080 P image quality, and a recognition speed of 8FPS, which can effectively detect the positions of 1–5 small UAVs in a picture. This method provides an effective positioning detection for low-altitude UAVs.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74849
dc.identifier.doi10.3390/app12115402
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app12115402
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/12/11/5402/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72087
dc.issue.number11
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.initial5402
dc.publisherMPDI
dc.relation.projectIDHoloWS1(101022219)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordcluster analysis
dc.subject.keywordsmall UAV
dc.subject.keywordchannel attention
dc.subject.keywordeffective receptive field
dc.subject.keywordtransfer learning
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleAn Efficient Detection Approach for Unmanned Aerial Vehicle (UAV) Small Targets Based on Group Convolution
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-12-05402.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format

Collections