Extensions and approximations of Banach-valued Sobolev functions
| dc.contributor.author | García Bravo, Miguel | |
| dc.contributor.author | Ikonen, Toni | |
| dc.contributor.author | Zhu, Zeng | |
| dc.date.accessioned | 2025-07-14T07:21:37Z | |
| dc.date.available | 2025-07-14T07:21:37Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | In complete metric measure spaces Z equipped with a doubling measure and supporting a weak Poincaré inequality, we consider a measurable subset Ω satisfying a measure-density condition. We investigate when a given Banach–valued Sobolev function defined on Ω is the restriction of a Banach–valued Sobolev function defined on the whole space Z. We study the problem for Hajłasz– and Newton–Sobolev spaces, respectively. First, we show that Hajłasz–Sobolev extendability holds for real-valued functions if and only if it holds for all Banach spaces. We also show that every c0-valued Newton–Sobolev extension set is a Banach-valued Newton–Sobolev extension set for every Banach space. We also prove that any measurable set satisfying a measure-density condition and a weak Poincaré inequality up to some scale is a Banach-valued Newton–Sobolev extension set for every Banach space. Conversely, we verify a folklore result stating that when n ≤ p < ∞, every W1,p extension domain Ω ⊂ Rn supports a weak (1, p)-Poincaré inequality up to some scale. As a related result of independent interest, we prove that in any metric measure space when 1 ≤ p < ∞ and real-valued Lipschitz functions with bounded support are norm-dense in the real-valued W1,p-space, then Banach-valued Lipschitz functions with bounded support are energy-dense in every Banach-valued W1,p-space whenever the Banach space has the socalled metric approximation property. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia | |
| dc.description.status | pub | |
| dc.identifier.doi | 10.1007/s00209-023-03389-1 | |
| dc.identifier.officialurl | https://doi.org/10.1007/s00209-023-03389-1 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/122474 | |
| dc.journal.title | Mathematische Zeitschrift | |
| dc.language.iso | eng | |
| dc.page.initial | 67(50) | |
| dc.publisher | Springer | |
| dc.relation.projectID | PID2022-138758NB-I00 | |
| dc.rights.accessRights | embargoed access | |
| dc.subject.keyword | Sobolev extension | |
| dc.subject.keyword | Newtonian spaces | |
| dc.subject.keyword | Poincaré inequality | |
| dc.subject.ucm | Ciencias | |
| dc.subject.unesco | 12 Matemáticas | |
| dc.title | Extensions and approximations of Banach-valued Sobolev functions | |
| dc.type | journal article | |
| dc.type.hasVersion | AM | |
| dc.volume.number | 305 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | cfa32fef-8467-4320-9632-85e4db107086 | |
| relation.isAuthorOfPublication.latestForDiscovery | cfa32fef-8467-4320-9632-85e4db107086 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Version aceptada Math. Zeit. 2023.pdf
- Size:
- 450.37 KB
- Format:
- Adobe Portable Document Format


