Extensions and approximations of Banach-valued Sobolev functions

dc.contributor.authorGarcía Bravo, Miguel
dc.contributor.authorIkonen, Toni
dc.contributor.authorZhu, Zeng
dc.date.accessioned2025-07-14T07:21:37Z
dc.date.available2025-07-14T07:21:37Z
dc.date.issued2023
dc.description.abstractIn complete metric measure spaces Z equipped with a doubling measure and supporting a weak Poincaré inequality, we consider a measurable subset Ω satisfying a measure-density condition. We investigate when a given Banach–valued Sobolev function defined on Ω is the restriction of a Banach–valued Sobolev function defined on the whole space Z. We study the problem for Hajłasz– and Newton–Sobolev spaces, respectively. First, we show that Hajłasz–Sobolev extendability holds for real-valued functions if and only if it holds for all Banach spaces. We also show that every c0-valued Newton–Sobolev extension set is a Banach-valued Newton–Sobolev extension set for every Banach space. We also prove that any measurable set satisfying a measure-density condition and a weak Poincaré inequality up to some scale is a Banach-valued Newton–Sobolev extension set for every Banach space. Conversely, we verify a folklore result stating that when n ≤ p < ∞, every W1,p extension domain Ω ⊂ Rn supports a weak (1, p)-Poincaré inequality up to some scale. As a related result of independent interest, we prove that in any metric measure space when 1 ≤ p < ∞ and real-valued Lipschitz functions with bounded support are norm-dense in the real-valued W1,p-space, then Banach-valued Lipschitz functions with bounded support are energy-dense in every Banach-valued W1,p-space whenever the Banach space has the socalled metric approximation property.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia
dc.description.statuspub
dc.identifier.doi10.1007/s00209-023-03389-1
dc.identifier.officialurlhttps://doi.org/10.1007/s00209-023-03389-1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122474
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.initial67(50)
dc.publisherSpringer
dc.relation.projectIDPID2022-138758NB-I00
dc.rights.accessRightsembargoed access
dc.subject.keywordSobolev extension
dc.subject.keywordNewtonian spaces
dc.subject.keywordPoincaré inequality
dc.subject.ucmCiencias
dc.subject.unesco12 Matemáticas
dc.titleExtensions and approximations of Banach-valued Sobolev functions
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number305
dspace.entity.typePublication
relation.isAuthorOfPublicationcfa32fef-8467-4320-9632-85e4db107086
relation.isAuthorOfPublication.latestForDiscoverycfa32fef-8467-4320-9632-85e4db107086

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Version aceptada Math. Zeit. 2023.pdf
Size:
450.37 KB
Format:
Adobe Portable Document Format

Collections