Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Volatility specifications versus probability distributions in VaR forecasting

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Facultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
Citations
Google Scholar

Citation

Abstract

We provide evidence suggesting that the assumption on the probability distribution for return in- novations is more influential for Value at Risk (VaR) performance than the conditional volatility specification. We also show that some recently proposed asymmetric probability distributions and the APARCH and FGARCH volatility specifications beat more standard alternatives for VaR fore- casting, and they should be preferred when estimating tail risk. The flexibility of the free power parameter in conditional volatility in the APARCH and FGARCH models explains their better performance. Indeed, our estimates suggest that for a number of financial assets, the dynamics of volatility should be specified in terms of the conditional standard deviation. We draw our results on VaR forecasting performance from i) a variety of backtesting approaches, ii) the Model Confi- dence Set approach, as well as iii) establishing a ranking among alternative VaR models using a precedence criterion that we introduce in this paper.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords