Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Quasiaspherical knots with infinitely many ends

Loading...
Thumbnail Image

Full text at PDC

Publication date

1983

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

European Mathematical Society
Citations
Google Scholar

Citation

Abstract

A smooth n-knot K in Sn+2 is said to be quasiaspherical if Hn+1(U)=0, where U is the universal cover of the exterior of K. Let G be the group of K and H the subgroup generated by a meridian. Then (G,H) is said to be unsplittable if G does not have a free product with amalgamation decomposition A∗FB with F finite and H contained in A. The authors prove that K is quasiaspherical if and only if (G,H) is unsplittable. If the group of K has a finite number of ends, then K is quasiaspherical and it was conjectured by the reviewer [J. Pure Appl. Algebra 20 (1981), no. 3, 317–324; MR0604323 (82j:57019)] that the converse was true. The authors give a very nice and useful method of constructing knots in Sn+2 and apply this method to produce counterexamples to the conjecture.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections