Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Quasiaspherical knots with infinitely many ends

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorGonzález Acuña, Francisco Javier
dc.date.accessioned2023-06-21T02:02:47Z
dc.date.available2023-06-21T02:02:47Z
dc.date.issued1983
dc.description.abstractA smooth n-knot K in Sn+2 is said to be quasiaspherical if Hn+1(U)=0, where U is the universal cover of the exterior of K. Let G be the group of K and H the subgroup generated by a meridian. Then (G,H) is said to be unsplittable if G does not have a free product with amalgamation decomposition A∗FB with F finite and H contained in A. The authors prove that K is quasiaspherical if and only if (G,H) is unsplittable. If the group of K has a finite number of ends, then K is quasiaspherical and it was conjectured by the reviewer [J. Pure Appl. Algebra 20 (1981), no. 3, 317–324; MR0604323 (82j:57019)] that the converse was true. The authors give a very nice and useful method of constructing knots in Sn+2 and apply this method to produce counterexamples to the conjecture.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComission Asesora del MUI
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17190
dc.identifier.doi10.1007/BF02564635
dc.identifier.issn0010-2571
dc.identifier.officialurlhttp://www.springerlink.com/content/q3x151q700053g45/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64700
dc.issue.number2
dc.journal.titleCommentarii Mathematici Helvetici
dc.language.isoeng
dc.page.final263
dc.page.initial257
dc.publisherEuropean Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordquasiaspherical n-knot
dc.subject.keywordknot group
dc.subject.keywordfree product with amalgamation over a finite group
dc.subject.keywordHNN-extension over a finite subgroup
dc.subject.keywordinfinitely many ends
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleQuasiaspherical knots with infinitely many ends
dc.typejournal article
dc.volume.number58
dcterms.referencesBIERI, R.,Mayer-Vietoris sequences for HNN-groups and homological duality, Math. Z.143 (1975) 123–130. GONZÁLEZ-ACUÑA, F., andMONTESINOS, J. M.,Ends of knot groups, Annals of Math.108 (1978) 91–96. LOMONACO, S.,The homotopy groups of knots I; how to compute the algebraic 2-type, Pacific J. Math.95 (1981) 349–390. RATCLIFFE, J.,On the ends of higher dimensional knot groups, J. Pure and Appl. Alg.20 (1981) 317–324 STALLINGS, J.,Group theory and three-dimensional manifolds, New Haven and London, Yale University Press (1971). SWAN, R. G.,Groups of cohomological dimension one, Journal of Algebra12 (1969) 585–601. SWARUP, A.,An unknotting criterion, Journal of Pure and Applied Algebra6 (1975) 291–296. WALL, C. T. C.,Pairs of relative cohomological dimension one, Journal of Pure and Applied Algebra1 (1971) 141–154. SERRE, J. P. Arbres, Amalgames, Sl 2, Asterisque46 (1977). DUNWOODY, M. J.,Accessibility and groups of cohomological dimension one, Proc. London Math. Soc.38 (1979), 193–215.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos14.pdf
Size:
611.63 KB
Format:
Adobe Portable Document Format

Collections