Quasiaspherical knots with infinitely many ends
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | González Acuña, Francisco Javier | |
dc.date.accessioned | 2023-06-21T02:02:47Z | |
dc.date.available | 2023-06-21T02:02:47Z | |
dc.date.issued | 1983 | |
dc.description.abstract | A smooth n-knot K in Sn+2 is said to be quasiaspherical if Hn+1(U)=0, where U is the universal cover of the exterior of K. Let G be the group of K and H the subgroup generated by a meridian. Then (G,H) is said to be unsplittable if G does not have a free product with amalgamation decomposition A∗FB with F finite and H contained in A. The authors prove that K is quasiaspherical if and only if (G,H) is unsplittable. If the group of K has a finite number of ends, then K is quasiaspherical and it was conjectured by the reviewer [J. Pure Appl. Algebra 20 (1981), no. 3, 317–324; MR0604323 (82j:57019)] that the converse was true. The authors give a very nice and useful method of constructing knots in Sn+2 and apply this method to produce counterexamples to the conjecture. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comission Asesora del MUI | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17190 | |
dc.identifier.doi | 10.1007/BF02564635 | |
dc.identifier.issn | 0010-2571 | |
dc.identifier.officialurl | http://www.springerlink.com/content/q3x151q700053g45/ | |
dc.identifier.relatedurl | http://www.springerlink.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64700 | |
dc.issue.number | 2 | |
dc.journal.title | Commentarii Mathematici Helvetici | |
dc.language.iso | eng | |
dc.page.final | 263 | |
dc.page.initial | 257 | |
dc.publisher | European Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.162.8 | |
dc.subject.keyword | quasiaspherical n-knot | |
dc.subject.keyword | knot group | |
dc.subject.keyword | free product with amalgamation over a finite group | |
dc.subject.keyword | HNN-extension over a finite subgroup | |
dc.subject.keyword | infinitely many ends | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Quasiaspherical knots with infinitely many ends | |
dc.type | journal article | |
dc.volume.number | 58 | |
dcterms.references | BIERI, R.,Mayer-Vietoris sequences for HNN-groups and homological duality, Math. Z.143 (1975) 123–130. GONZÁLEZ-ACUÑA, F., andMONTESINOS, J. M.,Ends of knot groups, Annals of Math.108 (1978) 91–96. LOMONACO, S.,The homotopy groups of knots I; how to compute the algebraic 2-type, Pacific J. Math.95 (1981) 349–390. RATCLIFFE, J.,On the ends of higher dimensional knot groups, J. Pure and Appl. Alg.20 (1981) 317–324 STALLINGS, J.,Group theory and three-dimensional manifolds, New Haven and London, Yale University Press (1971). SWAN, R. G.,Groups of cohomological dimension one, Journal of Algebra12 (1969) 585–601. SWARUP, A.,An unknotting criterion, Journal of Pure and Applied Algebra6 (1975) 291–296. WALL, C. T. C.,Pairs of relative cohomological dimension one, Journal of Pure and Applied Algebra1 (1971) 141–154. SERRE, J. P. Arbres, Amalgames, Sl 2, Asterisque46 (1977). DUNWOODY, M. J.,Accessibility and groups of cohomological dimension one, Proc. London Math. Soc.38 (1979), 193–215. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1