Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Neural-network quantum state tomography

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc
Citations
Google Scholar

Citation

Abstract

We revisit the application of neural networks to quantum state tomography. We confirm that the positivity constraint can be successfully implemented with trained networks that convert outputs from standard feedforward neural networks to valid descriptions of quantum states. Any standard neural-network architecture can be adapted with our method. Our results open possibilities to use state-of-the-art deep-learning methods for quantum state reconstruction under various types of noise.

Research Projects

Organizational Units

Journal Issue

Description

© 2022 American Physical Society. The authors thank Miroslav Ježek for useful discussions and two anonymous reviewers for their constructive and detailed comments. This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the QuantERA Programme through the project ApresSF and from the EU Grant No. 899587 (Project Stormytune), the Palacký University Grant No. IGA_PrF_2021_002, and the Spanish Ministerio de Ciencia e Innovacion Grant No.

UCM subjects

Keywords

Collections