Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Neural-network quantum state tomography

dc.contributor.authorKoutný, Dominik
dc.contributor.authorMotka, Libor
dc.contributor.authorHradil, Zdeněk
dc.contributor.authorŘeháček, Jaroslav
dc.contributor.authorSánchez Soto, Luis Lorenzo
dc.date.accessioned2023-06-22T10:54:00Z
dc.date.available2023-06-22T10:54:00Z
dc.date.issued2022-07-06
dc.description© 2022 American Physical Society. The authors thank Miroslav Ježek for useful discussions and two anonymous reviewers for their constructive and detailed comments. This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the QuantERA Programme through the project ApresSF and from the EU Grant No. 899587 (Project Stormytune), the Palacký University Grant No. IGA_PrF_2021_002, and the Spanish Ministerio de Ciencia e Innovacion Grant No.
dc.description.abstractWe revisit the application of neural networks to quantum state tomography. We confirm that the positivity constraint can be successfully implemented with trained networks that convert outputs from standard feedforward neural networks to valid descriptions of quantum states. Any standard neural-network architecture can be adapted with our method. Our results open possibilities to use state-of-the-art deep-learning methods for quantum state reconstruction under various types of noise.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipPalacky University
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74062
dc.identifier.doi10.1103/PhysRevA.106.012409
dc.identifier.issn2469-9926
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.106.012409
dc.identifier.relatedurlhttps://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71858
dc.issue.number1
dc.journal.titlePhysical review A
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectID(ApresSF; STORMYTUNE (899587))
dc.relation.projectIDPGC2018-099183-B-I00
dc.relation.projectIDIGA_PrF_2021_002
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptics
dc.subject.keywordPhysics
dc.subject.keywordAtomic
dc.subject.keywordMolecular
dc.subject.keywordChemical
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleNeural-network quantum state tomography
dc.typejournal article
dc.volume.number106
dspace.entity.typePublication
relation.isAuthorOfPublication88b797ff-cbd7-4498-a9c7-4e39f4fa4776
relation.isAuthorOfPublication.latestForDiscovery88b797ff-cbd7-4498-a9c7-4e39f4fa4776

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SanchezSotoLL 48 LIBRE.pdf
Size:
725.85 KB
Format:
Adobe Portable Document Format

Collections