Neural-network quantum state tomography
dc.contributor.author | Koutný, Dominik | |
dc.contributor.author | Motka, Libor | |
dc.contributor.author | Hradil, Zdeněk | |
dc.contributor.author | Řeháček, Jaroslav | |
dc.contributor.author | Sánchez Soto, Luis Lorenzo | |
dc.date.accessioned | 2023-06-22T10:54:00Z | |
dc.date.available | 2023-06-22T10:54:00Z | |
dc.date.issued | 2022-07-06 | |
dc.description | © 2022 American Physical Society. The authors thank Miroslav Ježek for useful discussions and two anonymous reviewers for their constructive and detailed comments. This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the QuantERA Programme through the project ApresSF and from the EU Grant No. 899587 (Project Stormytune), the Palacký University Grant No. IGA_PrF_2021_002, and the Spanish Ministerio de Ciencia e Innovacion Grant No. | |
dc.description.abstract | We revisit the application of neural networks to quantum state tomography. We confirm that the positivity constraint can be successfully implemented with trained networks that convert outputs from standard feedforward neural networks to valid descriptions of quantum states. Any standard neural-network architecture can be adapted with our method. Our results open possibilities to use state-of-the-art deep-learning methods for quantum state reconstruction under various types of noise. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. Horizonte 2020 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Palacky University | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74062 | |
dc.identifier.doi | 10.1103/PhysRevA.106.012409 | |
dc.identifier.issn | 2469-9926 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.106.012409 | |
dc.identifier.relatedurl | https://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/71858 | |
dc.issue.number | 1 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.projectID | (ApresSF; STORMYTUNE (899587)) | |
dc.relation.projectID | PGC2018-099183-B-I00 | |
dc.relation.projectID | IGA_PrF_2021_002 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Optics | |
dc.subject.keyword | Physics | |
dc.subject.keyword | Atomic | |
dc.subject.keyword | Molecular | |
dc.subject.keyword | Chemical | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Neural-network quantum state tomography | |
dc.type | journal article | |
dc.volume.number | 106 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 88b797ff-cbd7-4498-a9c7-4e39f4fa4776 | |
relation.isAuthorOfPublication.latestForDiscovery | 88b797ff-cbd7-4498-a9c7-4e39f4fa4776 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- SanchezSotoLL 48 LIBRE.pdf
- Size:
- 725.85 KB
- Format:
- Adobe Portable Document Format