Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unimodular gravity and general relativity from graviton self-interactions

dc.contributor.authorBarceló, Carlos
dc.contributor.authorCarballo Rubio, Raúl
dc.contributor.authorGaray Elizondo, Luis Javier
dc.date.accessioned2023-06-19T13:32:58Z
dc.date.available2023-06-19T13:32:58Z
dc.date.issued2014-06-16
dc.description© 2014 American Physical Society. Financial support was provided by the Spanish MICINN through Projects No. FIS2011-30145-C03-01 and No. FIS2011-30145-C03-02 (with FEDER contribution), and by the Junta de Andalucía through Project No. FQM219. R. C-R. acknowledges support from CSIC through the JAE-predoc program, cofunded by FSE.
dc.description.abstractIt is commonly accepted that general relativity is the only solution to the consistency problem that appears when trying to build a theory of interacting gravitons (massless spin-2 particles). Padmanabhan’s 2008 thought-provoking analysis raised some concerns that are having resonance in the community. In this paper we present the self-coupling problem in detail and explicitly solve the infinite-iterations scheme associated with it for the simplest theory of a graviton field, which corresponds to an irreducible spin-2 representation of the Poincaré group. We make explicit the nonuniqueness problem by finding an entire family of solutions to the self-coupling problem. Then we show that the only resulting theory which implements a deformation of the original gauge symmetry happens to have essentially the structure of unimodular gravity. This makes plausible the possibility of a natural solution to the first cosmological constant problem in theories of emergent gravity. Later on, we change for the sake of completeness the starting free-field theory to Fierz-Pauli theory, an equivalent theory but with a larger gauge symmetry. We indicate how to carry out the infinite summation procedure in a similar way. Overall, we conclude that as long as one requires the (deformed) preservation of internal gauge invariance, one naturally recovers the structure of unimodular gravity or general relativity but in a version that explicitly shows the underlying Minkowski spacetime, in the spirit of Rosen’s flat-background bimetric theory.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MICINN
dc.description.sponsorshipJunta de Andalucía
dc.description.sponsorshipCSIC
dc.description.sponsorshipFSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29600
dc.identifier.doi10.1103/PhysRevD.89.124019
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.89.124019
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33992
dc.issue.number12
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2011-30145-C03-01
dc.relation.projectIDFIS2011-30145-C03-02
dc.relation.projectIDFQM219
dc.relation.projectIDJAE-predoc
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordMassless particles
dc.subject.keywordEnergy-momentum
dc.subject.keywordFields
dc.subject.keywordDerivation
dc.subject.keywordPrinciple
dc.subject.keywordEquations
dc.subject.keywordSymmetry
dc.subject.keywordTensor
dc.subject.keywordSpin.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleUnimodular gravity and general relativity from graviton self-interactions
dc.typejournal article
dc.volume.number89
dcterms.references[1] N. Rosen, Phys. Rev., 57, 147 (1940). [2] N. Rosen, Phys. Rev., 57, 150 (1940). [3] S. N. Gupta, Phys. Rev., 96, 1683 (1954). [4] R. H. Kraichnan, Phys. Rev., 98, 1118 (1955). [5] R. P. Feynman, F. B. Morinigo, W. G. Wagner, and B. Hatfield, Feynman Lectures on Gravitation, Advanced Book Program (Westview Press, Boulder, CO, 2002). [6] S. Deser, Gen. Relativ. Gravit., 1, 9 (1970). [7] E. R. Huggins, Ph. D. thesis, California Institute of Technology, 1962; http://resolver.caltech.edu/CaltechTHESIS: 08182011‑085110085. [8] T. Padmanabhan, Int. J. Mod. Phys. D, 17, 367 (2008). [9] L. M. Butcher, M. Hobson, and A. Lasenby, Phys. Rev. D, 80, 084014 (2009). [10] S. Deser, Gen. Relativ. Gravit., 42, 641 (2010). [11] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), Part 3. [12] E. Wigner, Ann. Math., 40, 149 (1939). [13] F. Loebbert, Ann. Phys. (Amsterdam), 17, 803 (2008). [14] S. Weinberg, The Quantum Theory of Fields, in The Quantum Theory of Fields 3 Vol. 2 (Cambridge University Press, Cambridge, England, 1996). [15] A. Jenkins, Ph. D. thesis, California Institute of Technology, 2006; http://resolver.caltech.edu/CaltechETD:etd‑06022006‑145211. [16] V. I. Ogievetsky and I. V. Polubarinov, Ann. Phys. (N.Y.), 35, 167 (1965). [17] B. Zwiebach, A First Course in String Theory (Cambridge University Press, Cambridge, England, 2004). [18] J. J. van der Bij, H. van Dam, and Y. J. Ng, Physica (Amsterdam), 116A, 307 (1982). [19] M. Fierz and W. Pauli, Proc. R. Soc. A, 173, 211 (1939). [20] T. Ortín, Gravity and Strings, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 2007). [21] C. Barceló, L. J. Garay, and G. Jannes, Found. Phys., 41, 1532 (2011). [22] C. Aragone and S. Deser, Nuovo Cimento Soc. Ital. Fis. A, 3, 709 (1971). [23] G. Magnano and L. M. Sokolowski, Classical Quantum Gravity, 19, 223 (2002). [24] S. Weinberg and E. Witten, Phys. Lett., 96B, 59 (1980). [25] S. Weinberg, Phys. Lett., 9, 357 (1964). [26] S. Weinberg, Phys. Rev., 135, B1049 (1964). [27] F. J. Belinfante, Physica (Utrecht), 7, 449 (1940). [28] L. Rosenfeld, Mem. Acad. R. Belg. Sci., 18, 1 (1940). [29] J. Fang and C. Fronsdal, J. Math. Phys. (N.Y.), 20, 2264 (1979). [30] R. M. Wald, Phys. Rev. D, 33, 3613 (1986). [31] R. M. Wald, General Relativity (University of Chicago Press, Chicago, IL, 2010). [32] T. Padmanabhan, Gravitation: Foundations and Frontiers (Cambridge University Press, Cambridge, England, 2010). [33] S. Carlip, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46, 200 (2014). [34] L. Bombelli, W. E. Couch, and R. J. Torrence, Phys. Rev. D, 44, 2589 (1991). [35] L. Smolin, Phys. Rev. D, 80, 084003 (2009). [36] D. Blas, J. Phys. A, 40, 6965 (2007). [37] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972). [38] G. F. R. Ellis, H. van Elst, J. Murugan, and J.-P. Uzan, Classical Quantum Gravity, 28, 225007 (2011). [39] F. I. Cooperstock and M. J. Dupre, Ann. Phys. (Amsterdam), 339, 531 (2013). [40] M. J. Dupré, arXiv:0903.5225. [41] C. Barceló, S. Liberati, and M. Visser, Living Rev. Relativity, 8, 12 (2005). [42] G. F. R. Ellis, Gen. Relativ. Gravit., 46, 1619 (2013). [43] S. Deser, Classical Quantum Gravity, 4, L99 (1987). [44] E. Alvarez, J. High Energy Phys., 03 (2005) 002. [45] T. Padmanabhan, Gen. Relativ. Gravit., 46, 1673 (2014).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Art. 124.pdf
Size:
308.58 KB
Format:
Adobe Portable Document Format

Collections