Many-body Coulomb gauge exotic and charmed hybrids

Thumbnail Image
Full text at PDC
Publication Date
Cotanch, Stephen R
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science Bv
Google Scholar
Research Projects
Organizational Units
Journal Issue
Utilizing an effective QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson (q¯q ) and glueball (gg) masses. Hybrids entail a computationally intense relativistic three quasiparticle (q ¯ qg) calculation with the 9-dimensional Hamiltonian matrix elements evaluated variationally by Monte Carlo techniques. Our new TDA (RPA) spectrum for the nonexotic 1−− charmed (c ¯ c and c ¯cg) system provides an explanation for the overpopulation of the observed J/ψ states. For the important 1−+ light exotic channel we obtain hybrid masses above 2 GeV, in broad agreement with lattice and flux tube models, indicating that the recently observed resonances at 1.4 and 1.6 GeV are of different, perhaps four quark, structure.
© 2001 Published by Elsevier Science B.V. We thank NERSC for providing Cray J-90 CPU time. F.L.E. acknowledges SURA-Jefferson Lab for a graduate fellowship. This work was partially supported by grantsDOE DE-FG02 97ER41048 and NSF INT-9807009
Unesco subjects
[1] G.S. Adams et al., E852 Collaboration, Phys. Rev. Lett. 81 (1998) 5760; D.R. Thompson et al., E852 Collaboration, Phys. Rev. Lett. 79 (1997) 1630. [2] T. Barnes, F.E. Close, F. de Viron, J.Weyers, Nucl. Phys. B 224 (1983) 241. [3] P. Lacock, C. Michael, P. Boyle, P. Rowland, Phys. Rev. D 54 (1996) 6997. [4] C. McNeile, INFN Workshop on Hadron Spectroscopy, Frascati Physics Series 15 (1999) 13, hep lat/9904013. [5] T.Manke, I.T. Drummond, R.R. Horgan, H.P. Shanahan, Phys. Rev. D 57 (1998) R3829. [6] K.J. Juge, J. Kuti, C.J. Morningstar, Nucl. Phys. Proc. Suppl. 83 (2000) 304. [7] N. Isgur, J. Paton, Phys. Rev. D 31 (1985) 2910. [8] T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 52 (1995) 5242; E.S. Swanson, Nucl. Phys. Proc. Suppl. 86 (2000) 393; L. Burakovsky, P.R. Page, hep-ph/0007199. [9] K. Chetyrkin, S. Narison, Phys. Lett. B 485 (2000) 145. [10] N. Brambilla, Nucl. Phys. Proc. Suppl. 86 (2000) 389. [11] A. Le Yaouanc et al., Z. Phys. C 28 (1985) 309. [12] F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84 (2000) 1102. [13] F.J. Llanes-Estrada, S.R. Cotanch, hep-ph/0101078. [14] A.P. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76 (1996) 2011. [15] N.H. Christ, T.D. Lee, Phys. Rev. D 22 (1980) 939. [16] F.J. Llanes-Estrada, S.R. Cotanch, P.J. Bicudo, J.E.F.T. Ribeiro, A.P. Szczepaniak, hep-ph/0008212. [17] S.M. Gerasyura, V.I. Kochin, Phys. Rev. D 62 (2000) 014008. [18] E.S. Swanson, A.P. Szczepaniak, Phys. Rev. D 59 (1999) 014035. [19] C. Morningstar, private communication. [20] Eur. Phys. J. C 15 (2000) 1–878.