Design of a variable width pulse generator feasible for manual or automatic control
dc.contributor.author | Vegas Azcárate, Ignacio | |
dc.contributor.author | Antoranz Canales, Pedro | |
dc.contributor.author | Miranda Pantoja, José Miguel | |
dc.contributor.author | Franco Peláez, Francisco Javier | |
dc.date.accessioned | 2023-06-17T23:53:47Z | |
dc.date.available | 2023-06-17T23:53:47Z | |
dc.date.issued | 2017-01-01 | |
dc.description | © 2016 Elsevier B.V. All rights reserved. This work was supported by MCINN project FPA2015-69120-C6–5R | |
dc.description.abstract | A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/39571 | |
dc.identifier.doi | 10.1016/j.nima.2016.10.015 | |
dc.identifier.issn | 0168-9002 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.nima.2016.10.015 | |
dc.identifier.relatedurl | https://www.elsevier.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/18985 | |
dc.issue.number | 1 | |
dc.journal.title | Nuclear instruments & methods in physics research. Section A, Accelerators spectrometers detectors and associated equipment | |
dc.language.iso | eng | |
dc.page.final | 116 | |
dc.page.initial | 109 | |
dc.publisher | Elsevier Science BV | |
dc.relation.projectID | FPA2015-69120-C6-5R | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537.8 | |
dc.subject.keyword | Pulse generation | |
dc.subject.keyword | Signal on transition | |
dc.subject.keyword | Variable width | |
dc.subject.ucm | Electromagnetismo | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202 Electromagnetismo | |
dc.title | Design of a variable width pulse generator feasible for manual or automatic control | |
dc.type | journal article | |
dc.volume.number | 841 | |
dcterms.references | [1] D. Ferenc, M. collaboration, et al., The MAGIC gamma-ray observatory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 553 (1) (2005) 274-281. [2] B. Acharya, M. Actis, T. Aghajani, G. Agnetta, J. Aguilar, F. Aharonian, M. Ajello, A. Akhperjanian, M. Alcubierre, J. Aleksi¢, et al., Introducing the CTA concept, Astroparticle Physics 43 (2013) 3-18, seeing the High-Energy Universe with the Cherenkov Telescope Array - The Science Explored with the CTA. doi:10.1016/j.astropartphys.2013.01.007 URL http://www.sciencedirect.com/science/article/pii/S0927650513000169 [3] P. A. Cherenkov, Radiation of particles moving at a velocity exceeding that of light, and some of the possibilities for their use in experimental physics, Nobel Lecture, December 11. [4] J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, M. Asensio, C. Baixeras, J. Barrio, H. Bartko, D. Bastieri, et al., FADC signal reconstruction for the MAGIC telescope, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 594 (3) (2008) 407-419. [5] F. Lucarelli, M. Camara, P. Antoranz, J. Miranda, M. Asensio, J. Barrio, M. Fonseca, Testbench to characterize pixels of the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescope, Optical Engineering 45 (8) (2006) 084003-084003-7. [6] P. Antoranz, I. Vegas, J. Miranda, A 4V, ns-range pulse generator for the test of Cherenkov elescopes readout electronics, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 620 (2) (2010) 456-461. [7] J. Lee, C. Nguyen, Uniplanar picosecond pulse generator using step-recovery diode, Electronics Letters 37 (8) (2001) 504-506. [8] F. Ziegler, D. Beck, H. Brand, H. Hahn, G. Marx, L. Schweikhard, A new Pulse-Pattern Generator based on LabVIEW FPGA, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 679 (2012) 1-6. [9] S. Sanchez, M. Gonzalez, M. Seisdedos, D. Meziat, M. Carbajo, J. Medina, E. Bronchalo, L. del Peral, J. Rodriguez-Pacheco, Low-cost programmable pulse generator for particle telescope calibration, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 436 (3) (1999) 386-393. [10] A. Gil, E. Castro, J. Diaz, P. Fonte, J. Garzon, N. Montes, M. Zapata, Custom pulse generator for RPC testing, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 602 (3) (2009) 801-804. [11] Y. Zhu, L.-m. WANG, Design and Implementation of Nanosecond Pulse Generator Based on Reconfiguration PLL in FPGA, in: 2015 International Conference on Electronic Science and Automation Control, Atlantis Press, 2015. [12] P. Binh, P. Renucci, V. G. Truong, X. Marie, Schottky-capacitance pulse-shaping circuit for high-speed light emitting diode operation, Electronics letters 48 (12) (2012) 1. [13] Y. Bilenko, A. Lunev, X. Hu, J. Deng, T. M. Katona, J. Zhang, R. Gaska, M. S. Shur, W. Sun, V. Adivarahan, et al., 10 milliwatt pulse operation of 265 nm AlGaN light emitting diodes, Japanese Journal of Applied Physics 44 (1L) (2004) L98. [14] J. Andrews, Picosecond pulse generation techniques and pulser capabilities, Picosecond Pulse Labs AN-30419 (Rev. 1). [15] E. Afshari, A. Hajimir, Nonlinear transmission lines for pulse shaping in silicon, IEEE Journal of Solid-State Circuits 40 (3) (2005) 744-752. [16] D. S. Ricketts, X. Li, N. Sun, K. Woo, D. Ham, On the self-generation of electrical soliton pulses, IEEE Journal of Solid-State Circuits 42 (8) (2007) 1657-1668. [17] O. O. Yildirim, D. S. Ricketts, D. Ham, Reflection soliton oscillator, IEEE Transactions on Microwave Theory and Technique 57 (10) (2009) 2344-2353. doi:10.1109/TMTT.2009.2029025 . [18] A New Breed of Comb Generators Featuring Low Phase Noise and Low Input Power, Editorial Note, Microwave Journal. [19] X. Lan, M. Kintis, F. S. Fong, High efficiency NLTL comb generator using time domain waveform synthesis technique, uS Patent 7,462,956 (Dec. 9 2008). [20] Keysight Datasheets, N2806A Calibration Pulse Generator, The World Fastest Differential Pulse Generator (Ago 2014). URL http://literature.cdn.keysight.com/litweb/pdf/5991-0311EN.pdf?id=2188765 [21] J. M. Libove, S. J. Chacko, Methods, apparatuses, and systems for sampling or pulse generation, US Patent 6,433,720 (Aug. 13 2002). [22] J. M. Libove, S. J. Chacko, Methods and apparatuses for multiple sampling and multiple pulse generation, US Patent 6,642,878 (Nov. 4 2003). [23] P. Horowitz, W. Hill, T. C. Hayes, The Art of Electronics, Vol. 2, Cambridge university press Cambridge, 1989. [24] Charge Pump TC962 Datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/21484D.pdf. [25] B. Baker, Using Single Supply Operational Amplifiers in Embedded Systems, Microchip Technology Inc. URL http://ww1.microchip.com/downloads/en/AppNotes/00682D.pdf [26] Analog Devices, High Speed Instrumentation Amplifier Using the AD8271 Difference Amplifier and the ADA4627-1 JFET Input Op Amp. URL: http://www.analog.com/media/en/reference-design-documentation/reference-designs/CN0122.pdf [27] Analog Circuits, ADA4857 datasheet. URL http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4857-1_4857-2.pdf [28] Analog Circuits, AD8009 datasheet. URL http://www.analog.com/media/en/technical-documentation/data-sheets/AD8009.pdf [29] G. K. Blanz, R. L. Knauber, A New Programmable, Building-Block Pulse and Digital System. URL http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1969-04.pdf [30] Agilent Technologies, Application Note 1437, Using a Function/Arbitrary Waveform Generator to Generate Pulses. URL http://cp.literature.agilent.com/litweb/pdf/5988-8472EN.pdf [31] A. S. Sedra, K. C. Smith, Microelectronic Circuits, 7th Edition, Vol. 1, New York: Oxford University Press, 2014. [32] Minicircuits, BLK-89+ datasheet. URL http://www.minicircuits.com/pdfs/BLK-89+.pdf [33] Analog Devices, Op Amp Input and Output Common-Mode and Differential Voltage Range, Tutorial MT-041 Http://www.analog.com/media/en/training-seminars/tutorials/MT-041.pdf. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6bc87e5f-9b77-4982-b112-0d4f8aa128d0 | |
relation.isAuthorOfPublication | 328f9716-2012-44f9-aacc-ef8d48782a77 | |
relation.isAuthorOfPublication | 662ba05f-c2fc-4ad7-9203-36924c80791a | |
relation.isAuthorOfPublication.latestForDiscovery | 6bc87e5f-9b77-4982-b112-0d4f8aa128d0 |
Download
Original bundle
1 - 1 of 1