Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem

Loading...
Thumbnail Image

Full text at PDC

Publication date

1981

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Université Toulouse III
Citations
Google Scholar

Citation

Abstract

The authors consider the problem ut−div(|∇u|p−2∇u)=0 in (0,∞)×RN, u(x,0)=u0(x). They show that if N≥2 and 1<p<2N/(N+1) the solution has a finite extinction time for each u0∈Lm, m=N(2/p−1), and if N=1, p>1 or N≥2, p≥2N/(N+1) then conservation of total mass holds, i.e., ∫u(t,x)dx=∫u0(x)dx. Moreover the regularizing and decay estimate for ∥u(t)∥m (1<m≤∞) is proved for u0∈Lm0 with m0≥1, which is the extension of the corresponding result for bounded domains by L. Véron [same journal (5) 1 (1979), no. 2, 171–200] to the case of whole space. Finally the finite extinction time problem is discussed for the problem in a bounded domain, extending the result by A. Bamberger [J. Funct. Anal. 24 (1977), no. 2, 148–155].

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections