Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVázquez, Juan Luis
dc.date.accessioned2023-06-21T02:06:41Z
dc.date.available2023-06-21T02:06:41Z
dc.date.issued1981
dc.description.abstractThe authors consider the problem ut−div(|∇u|p−2∇u)=0 in (0,∞)×RN, u(x,0)=u0(x). They show that if N≥2 and 1<p<2N/(N+1) the solution has a finite extinction time for each u0∈Lm, m=N(2/p−1), and if N=1, p>1 or N≥2, p≥2N/(N+1) then conservation of total mass holds, i.e., ∫u(t,x)dx=∫u0(x)dx. Moreover the regularizing and decay estimate for ∥u(t)∥m (1<m≤∞) is proved for u0∈Lm0 with m0≥1, which is the extension of the corresponding result for bounded domains by L. Véron [same journal (5) 1 (1979), no. 2, 171–200] to the case of whole space. Finally the finite extinction time problem is discussed for the problem in a bounded domain, extending the result by A. Bamberger [J. Funct. Anal. 24 (1977), no. 2, 148–155].
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22798
dc.identifier.issn0240-2955
dc.identifier.officialurlhttp://www.numdam.org/item?id=AFST_1981_5_3_2_113_0
dc.identifier.relatedurlhttp://www.numdam.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64877
dc.issue.number2
dc.journal.titleAnnales de la Faculté des Sciences de Toulouse. Série V
dc.language.isoeng
dc.page.final127
dc.page.initial113
dc.publisherUniversité Toulouse III
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu517.956.4
dc.subject.keywordStrongly nonlinear parabolic problem
dc.subject.keywordfinite extinction time
dc.subject.keywordhomogeneous Dirichlet boundary conditions
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleAsymptotic behaviour of the solutions of a strongly nonlinear parabolic problem
dc.typejournal article
dc.volume.number3
dcterms.referencesA. Bamberger. «Etude d'une équation doublement non linéaire». Journal of Functional Analysis 24 (1977), p. 148-155. P. Benilan - M.G. Crandall. «The continuous dependence on φ of solutions of ut - Δφ(u) = 0».MRC report MC 578-01245. G. Diaz - J.I. Diaz. «Finite extinction time for a class of nonlinear parabolic equations». Comm. in P.D.E. 4,11 (1979), p. 1213-1231. J.I. Diaz - M.A. Herrero. «Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems». Proc. Royal Soc. Edinburgh, to appear. L.C. Evans. «Application of nonlinear semigroup theory to certain partial differential equations». in Nonlinear evolution equations, M.G. Grandall ed. (1979). A. Friedman. «Partial Differential Equations». Holt, Rinehart and Winston (1973). M.H. Protter - H.F. Weinberger. «Maximum principles in differential equations». Prentice Hall (1967). E.S. Sabinina. «A class of nonlinear degenerating parabolic equations». Soviet Math. Dokl 3 (1962), p. 495-498 (in Russian). J.L. Vazquez. «An a priori interior estimate for the solutions of a nonlinear problem representing weak diffusion». Nonlinear Analysis, 5 (1981), p. 95-103. J.L. Vazquez - L. Veron. «Removable singularities of some strongly nonlinear elliptic equations». Manuscr. Math., 33 (1980), p. 129-144. L. Veron. «Effets régularisants de semi-groupes non linéaires dans des espaces de Banach». Annales Fac. Sci. Toulouse, 1 (1979), p. 171-200.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero92.pdf
Size:
894.67 KB
Format:
Adobe Portable Document Format

Collections